一般包含以下两部分:1)比较确定性的答案(基本答案);2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果).五、提交一篇论文,基本内容和格式是什么?提交一篇论文,基本内容和格式大致分三大部分:1.标题、摘要部分题目——写出较确切的题目(不能只写A题、B题).摘要——200-300字,包括模型的主要特点、建模方法和主要结果.内容较多时最好有个目录.2.中心部分1)问题提出,问题分析.2)模型建立:①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);③模型求解;④模型性质;3)计算方法设计和计算机实现.4)结果分析与检验。
在一个小组中,出现意见不一是非常正常的,如果一个队意见完全一致,我想他们肯定不会拿奖。
出现分歧的时候应当如何解决是很关键的,甚至直接决定你是否可以获奖,我的建议是“妥协”,这似乎是个贬义词,但我的意思是说不要总认为自己的观点是正确的,多听听别人的观点,在两者之间谋求共同点。
如果三个人都是自傲类型的人,也许每个人都非常强,但一旦合作,分歧就无法解决,做出来的就是一团糟,也就是说“三个诸葛亮顶不上一个臭皮匠”。
我奉劝这样的话最好别组成一队了。
合作在竞赛前就应当培养,比如一块儿做模拟题什么的,充分利用每个人的优点,也可以张三准备图论,李四准备最优化方法,然后几天后大家一块交流,这些都是可以磨合团队之间的关系的。
通常在比赛时,三个人的分工是明确的,一个是领军人物,主要是构建整个问题的框架并提出有创意的idea,自然其他部分比如论文写比如程序设计比如计算他也能参加,应该算是一名全能型的人物;第二个是算手,顾名思义,主司计算方面的问题,比如编程计算一个微积分或者手工计算一条最优路径等。
优秀的团队算手一般会精通(是精通不是入门)一个软件的应用,比如C比如MATLAB比如LINGO;最后一个是写手,主要工作在于论文的写作和润色上。
好的论文要让人一眼就明了其中的意思,所以写手的工作还是需要一定的技巧的。
当然,最重要的还是三个队员之间的讨论和交流,同心协力,在整个比赛过程中形成一种良好的交流氛围。
比如要画柱状图该怎么做,要用Floyd算法怎么办,赛前不准备是没有办法在比赛中很好运用的,因此每个常用的算法都自己去编程实现一下.8模型的假设与模型的建立评委看完摘要后紧接着就是看模型假设了,有一个万能的方法就是可以抄题目中可以作为假设的几句话,这样会给人留下好的印象,毕竟说明你审题了.但不能全抄,要加上自己的一些假设.一般假设用文字描述就行了,最好不要太具体了,一些重要参数不要被定死只能取某些值,否则会让人感觉论文的局限性较强.模型的建立是根据你对问题分析而来的,提出的数学符号和建立模型最好要比较接近,在同一页最好,以便评委可以对照符号来看,数学公式要严谨,推导要严密,这些都反映了参赛者的数学素质和能力,即使你推导不对,别人看到你的阵势也首先会误以为你是对的。
那么多的试卷,评委不可能顺着你的公式一直推下去,但你要写得显得有数学修养才行.9图文表并貌可以增色我听说一个不确切的信息是评委老师喜欢用MATLAB编程的论文,不知道有没有这回事,但这说明了老师需要看一个具有图或表在其中的论文,一篇如果像政治书那样写的论文估计没有人会对它感兴趣的,尤其是科技论文.MATLAB编程之所以受到青睐是因为MATLAB提供的图形处理能力很强大.图表的说明性特别强,如果结论有很多数据的话,最好做成图表的形式加以说明,会令你的论文更有说服力,也更容易受到评委的好评.10其他其他内容还是有很多的,说也说不完,挑几个重要的讲.比如不要上网讨论,网上的人水平参差不齐,你不知道谁是对的,而且很多人想得奖,不会告诉你正确的,反而骗你说相反的,有时真理往往掌握在少数人手里.还有就是论文写作中灵敏度分析不要写太多,大致说明一下就可以了,不要喧宾夺主.最后想到的就是要使用数学公式编辑器来写论文,不要用什么上下标来表示,论文字体用小四,分标题用四号黑体等等.数学建模竞赛中应当掌握的十类算法(上)1十类常用算法1.蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2.数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB作为工具。
3.线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件求解。
4.图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5.动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6.最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7.网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8.一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9.数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10.图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB进行处理。
2.以下将结合历年的竞赛题,对这十类算法进行详细地说明2.1蒙特卡罗算法大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。
举个例子就是97年的A题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。
另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。
2.2数据拟合、参数估计、插值等算法数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98年美国赛A题,生物组织切片的三维插值处理,94年A题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。
此类问题在MATLAB中有很多现成的函数可以调用,熟悉MATLAB,这些方法都能游刃有余的用好。
2.3规划类问题算法竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo等软件来进行解决比较方便,所以还需要熟悉这两个软件。
2.4图论问题98年B题、00年B题、95年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。
每一个算法都应该实现一遍,否则到比赛时再写就晚了。
2.5计算机算法设计中的问题计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。
比如92年B题用分枝定界法,97年B题是典型的动态规划问题,此外98年B题体现了分治算法。
这方面问题和ACM程序设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。
2.6最优化理论的三大非经典算法这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。
近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97年A题的模拟退火算法,00年B题的神经网络分类算法,象01年B题这种难题也可以使用神经网络,还有美国竞赛89年A题也和BP算法有关系,当时是86年刚提出BP算法,89年就考了,说明赛题可能是当今前沿科技的抽象体现。
03年B题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。
2.7网格算法和穷举算法网格算法和穷举法一样,只是网格法是连续问题的穷举。
比如要求在N个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在[a,b]区间内取M+1个点,就是a,a+(b-a)/M,a+2*(b-a)/M,…,b那么这样循环就需要进行(M+1)N次运算,所以计算量很大。
比如97年A题、99年B题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来做,最好不要用MATLAB做网格,否则会算很久的。
穷举法大家都熟悉,就不说了。
2.8一些连续数据离散化的方法大部分物理问题的编程解决,都和这种方法有一定的联系。
物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。
这种方法应用很广,而且和上面的很多算法有关。
事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。
2.9数值分析算法这类算法是针对高级语言而专门设的,如果你用的是MATLAB、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学软件是具备的。
2.10图象处理算法01年A题中需要你会读BMP图象、美国赛98年A题需要你知道三维插值计算,03年B题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。
做好这类问题,重要的是把MATLAB学好,特别是图象处理的部分。