拓扑排序的英文名是Topologicalsorting。拓扑排序要解决的问题是给一个图的所有节点排序。
一、什么是拓扑排序
在图论中,拓扑排序(TopologicalSorting)是一个有向无环图(DAG,DirectedAcyclicGraph)的所有顶点的线性序列。且该序列必须满足下面两个条件:
(1)每个顶点出现且只出现一次。
(2)若存在一条从顶点A到顶点B的路径,那么在序列中顶点A出现在顶点B的前面。
有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。
例如,下面这个图:
它是一个DAG图,那么如何写出它的拓扑排序呢?这里说一种比较常用的方法:
(1)从DAG图中选择一个没有前驱(即入度为0)的顶点并输出。
(2)从图中删除该顶点和所有以它为起点的有向边。
(3)重复1和2直到当前的DAG图为空或当前图中不存在无前驱的顶点为止。后一种情况说明有向图中必然存在环。
于是,得到拓扑排序后的结果是{1,2,4,3,5}。
通常,一个有向无环图可以有一个或多个拓扑排序序列。
二、拓扑排序的应用
拓扑排序通常用来“排序”具有依赖关系的任务。
比如,如果用一个DAG图来表示一个工程,其中每个顶点表示工程中的一个任务,用有向边表示在做任务B之前必须先完成任务A。故在这个工程中,任意两个任务要么具有确定的先后关系,要么是没有关系,绝对不存在互相矛盾的关系(即环路)。
三、拓扑排序的实现
根据上面讲的方法,我们关键是要维护一个入度为0的顶点的集合。
图的存储方式有两种:邻接矩阵和邻接表。这里我们采用邻接表来存储图,C++代码如下:
intmain(){Graphg(6);//创建图g.addEdge(5,2);g.addEdge(5,0);g.addEdge(4,0);g.addEdge(4,1);g.addEdge(2,3);g.addEdge(3,1);g.topological_sort();return0;}输出结果是4,5,2,0,3,1。这是该图的拓扑排序序列之一。
每次在入度为0的集合中取顶点,并没有特殊的取出规则,随机取出也行,这里使用的queue。取顶点的顺序不同会得到不同的拓扑排序序列,当然前提是该图存在多个拓扑排序序列。
C语言网提供由在职研发工程师或ACM蓝桥杯竞赛优秀选手录制的视频教程,并配有习题和答疑,点击了解: