一文搞懂四大主流平台的流量算法(各个主流平台的流量算法底层逻辑)

流量分散,渠道多元。想要获取流量,还真就得了解各个主流平台的流量算法。

一、抖音

抖音的流量算法几乎是所有流量平台中最为复杂的,当然也是流量最大的。

抖音是典型的“标签”对“标签”的平台。

如果你是创作者,平台会根据你发布的内容形成创作者标签,标签数量同样是150个,如果发布内容产生变化,创作者标签也会随之变化。

创作者发布视频后,视频会根据创作者标签匹配相似的用户标签,这就是上面我们讲过的“标签”对“标签”的流量算法。

短视频匹配到用户后,会通过该视频的数据表现来衡量该视频是否值得进一步的推荐。

抖音对单个视频的推荐,会考核5个关键数据。

1)完播率

如果是新号的话,建议前期视频时长不要太长,时长越长,完播越低,除非视频质量极佳。

2)点赞率

点赞率=点赞量/播放量

点赞量越高,推荐量才会越高,第一波推荐的点赞率至少要达到3%-5%,也就是说每100个播放量,至少要有3-5个点赞。

3)留言率

留言率=留言量/播放量

4)转发率

转发率=转发量/播放量

转发率对于还在初级流量池流传的视频影响并不大,但想要突破流量层级,转发率就是很关键的指标。

5)转粉率

抖音平台是一个巨大的流量池,抖音推荐机制是一个渔网,视频内容是鱼饵。

如果你的视频的五个关键数据都能取得较好的数据表现,那么进入到中高级的流量池继续流转的可能性非常大。

初级流量池的流量大约在1000-5000左右,同样需要继续观察视频在初级流量池的变现,如果数据继续过关,将进入中级流量池。

中级流量池就有10000以上的播放量,同理看数据表现;

高级流量池就有十万+以上的播放量了,上不封顶。

二、小红书

小红书的算法和抖音类似,也是“标签”对“标签”的流量算法。

不同的是,基于不同的用户习惯,抖音更侧重主动推荐,小红书更侧重搜索推荐。

搜索结果与需求的匹配主要是核心关键词与query的匹配度,搜索结果中展示的具体内容是通过分析用户需求,找到最能命中用户需求的信息。

一篇笔记标题中的关键词可谓是重中之重,官方也明确提示:“填写标题会有更多赞哦”。

由此可见,标题是小红书官方用来识别内容属性的重要选项,想要让笔记获得更多的展现,最基础的工作就是要做好标题的优化。

我们要善用搜索的关键词、热词推荐等来帮助我们找到笔记核心词,以便能让系统识别并推荐给对应用户。

从推荐内容找核心词

推荐内容包括几个方面,搜索框置灰关键词,页面显示的历史搜索,热搜词。

1)默认提示词

点开搜索还未输入搜索词之前,平台会根据用户标签推荐默认提示词,默认提示词中存在一定量的搜索流量。

3)补充联想关键词

补充联想关键词,即用户输入部分内容,然后系统根据这些内容联想出完整内容,自动补全关键词,通过即时匹配关键词并展示出来,增加用户的选择。我搜了显瘦,平台就给我推荐了关于显瘦的几个关键词推荐。

考虑热词排序是综合展示的结果。除了笔记数外,“热词”的热度排序可能还牵涉到两个方面的因素:用户主动搜索的频率,以及笔记本身被系统推荐的热度。

关于关键词的选择有以下几点值得注意:

2)一定要优先选择竞争度小流量大且比较精准的关键词,避免选择宽泛的关键词。

3)学会反推关键词。确定笔记主题及关键词后,要去反推希望用户用什么关键词能搜到自己的笔记,考虑如果自己去搜这类笔记会用哪些常见关键词去搜。

三、知乎

首先是针对搜索流量,知乎的搜索排名其实跟搜索引擎是有类似的,内容需要先进行收录,然后才能提升搜索词排名。

当然,搜索还涉及到问题下回答的排名,一般来说,搜索词收录该问题后,会抓取问题下其中一条高赞的回答展现,除此之外,因为用户的习惯一般会参考不止一条回答,那么该问题下自然排序第一的回答,也有更大的曝光概率。

所以,如果能够实现搜索词+问题下的排名都非常靠前,那么流量自然就会更好;如果不能实现两者均很靠前,那么起码要实现有一条在靠前的位置。

第二是针对推荐流量,推荐流量是通过知乎的推荐算法,然后将内容推送给用户。

一般来说,推荐算法会先将内容推送给一小部分人,然后收集反馈数据,如阅读完成率、赞同率、互动数据等,来判断这条内容是否值得持续推荐。

当然,针对视频类内容,其分发机制跟推荐类似,而且有单独的榜单支撑,参考即可。

第四是综合算法,和头条、抖音等平台不同的是,知乎采用的是威尔逊算法,即根据内容的点赞、反对、收藏等数据,按照威尔逊公式来决定内容的推荐和排名。

算法公式虽然很复杂,但大家只需要记住最核心的一点:赞同率比赞同数重要,反对率比赞同率重要。

和其他内容平台不相同的是,除了点赞和互动,知乎用户还可以给不同意的内容点反对票,而反对票数一定程度上将会影响回答排名。

四、视频号

所以无论是发视频还是发图片,添加话题和定位更有助于个性化推荐。这一点跟抖音的推荐算法有点相似,只不过目前还不够成熟。

3)去中心化的推荐算法

视频号虽然是基于社交推荐,但每个人的社交关系链毕竟有限,当一个作品已经在完整的社交关系链获得了展现且取得了较好的数据表现后,视频号会进行社交关系链以外的扩大推荐,逻辑类似于抖音的“标签”对“标签”,这里不做过多延展。

以上就是抖音、小红书、知乎、视频号的流量算法,相信大家仔细阅读后会对四大平台有新的了解和认识,如果还有不明白需要交流的地方欢迎来找我交流。

THE END
1.计算机10大经典算法计算机经典算法在介绍了快速排序和归并排序这两种高效的排序算法后,我们现在来看看另一种重要的排序方法——堆排序。堆排序是一种基于完全二叉树结构的比较排序算法,它利用了堆的特性来进行高效排序20。其核心思想是将待排序的数据构造成一个大顶堆或小顶堆,然后逐步交换堆顶元素和堆尾元素,同时调整堆结构,最终得到有序序列21。https://blog.csdn.net/2401_86544677/article/details/143141716
2.共识算法介绍2、主流的共识算法有哪些? 3、目前主流区块链(比特币、以太坊等)分别采用哪种共识算法? 4、哪种共识算法最好? 1、什么是共识机制? 我们都知道,区块链可以看作一本记录所有交易的分布式公开帐簿,区块链网络中的每个参与者都把它看作一本所有权的权威记录。 https://www.jianshu.com/p/8b50304db034
3.Contents/premium.mdatmaster·Newslab2020/Contents·GitHub封城之后会留下什么? 582 知网、Sci-Hub与学术出版业的暴利 2022/4/21 “学者都是出版商的奴隶”; 学术出版行业背后的英国大亨; Sci-Hub能否挑战出版商霸权? 581 三个与对话、求真有关的项目 2022/4/16 Letter:公开、真诚的通信对话; Pairagraph:公共议题的回合辩论; https://github.com/Newslab2020/Contents/blob/master/premium.md
4.智能机器人系列报告三:技术的盛宴,服务机器人核心技术与模块解析激光雷达是“机器之眼”,能够获得周边环境的点云数据模型,现在多用于在测量中有一定精度要求的领域,或需要测量自身与人体距离的智能装备,在测量与人的距离这一功能上尚无完美替代方案。在目前主流的前沿机器人身上已经装备了激光雷达模块,如Atlas和pepper等。https://blog.sina.com.cn/s/blog_a816de580102wu8z.html?bsh_bid=1917182908
5.现在主流的软件开发技术有哪些?TensorFlow和PyTorch是两个流行的机器学习框架,它们提供了强大的工具和算法,用于开发各种智能应用和模型。 Scikit-learn: Scikit-learn是一个用于机器学习的Python库,包含了许多常用的算法和工具,使得机器学习的应用更加方便。 7. 云计算 AWS、Azure、Google Cloud: http://www.apppark.cn/t-49941.html
6.主流的哈希算法有哪几种?SHA-3(Secure Hash Algorithm 3):是美国国家标准与技术研究院(NIST)于2015年发布的新一代安全哈希算法,其基于 Keccak 算法,提供了多个摘要长度选项,如 SHA-3-224、SHA-3-256、SHA-3-384 和 SHA-3-512。 CRC32(Cyclic Redundancy Check):产生32位的哈希值,主要用于数据校验和错误检测,如文件校验、网络通信等https://www.nowcoder.com/discuss/621489203938930688
7.把这些计算机基础知识学完后,我飘了!RLE 算法的机制 接下来就让我们正式看一下文件的压缩机制。首先让我们来尝试对AAAAAABBCDDEEEEEF这 17 个半角字符的文件(文本文件)进行压缩。虽然这些文字没有什么实际意义,但是很适合用来描述RLE的压缩机制。 由于半角字符(其实就是英文字符)是作为 1 个字节保存在文件中的,所以上述的文件的大小就是 17 字节。如图https://maimai.cn/article/detail?fid=1400649709&efid=VmhIiOBVBH0ua86U1tJoEA
8.《SEO实战密码(第3版)》精华整理整个第3版600多页,就中国大陆人来看很臃肿,毕竟中国大陆以百度为主,书中包括外链、作弊方式等等很多都过时了,但这本书只有新增补充,并没有做太多相应的删减。 尽信书不如无书,学会带着自己思维去看去做会更好,SEO算法本就不是公开的,一旦公开可能又会有很多作弊手段出现,但现在百度官方给出了很多良好的建议https://lusongsong.com/yulu/wap.asp?id=7015
9.20年前100块≈现在310?通胀之下,准备多少钱才够养老?另外提醒大家:目前并没有官方统计的通货膨胀率,以下仅为两种网络主流算法,计算思路及结果仅供参考。 思路一:消费者物价指数(CPI算法) CPI(消费者物价指数),能很好地反映生活中那些消费品,如肉蛋奶、烟酒茶的价格变化,一定程度上,能反映通货膨胀率。 我们统计了从 2002 年开始,到 2021 年的 CPI 数据,各年度波动https://www.shenlanbao.com/caifu/1635471539614597120
10.web3:同态加密(一)SWHE方案稍弱,但也意味着开销会变得较小,容易实现,现在已经可以在实际中使用。 主流同态加密算法原理 满足有限运算同态性而不满足任意运算同态性的加密算法称为半同态加密。典型的半同态加密特性包括乘法同态、加法同态、有限次数全同态等。 乘法同态加密算法https://developer.aliyun.com/article/1154858
11.路飞学城1、对各种高精尖算法有较深研究; 2、精读Python源码,熟知Python解释器底层技术实现; 3、擅长领域:汇编、C/C++、Python、Java、逆向工程、机器学习与人工智能等; 教学大纲 包含Python工程师需要的全部技术要求 第一阶段:Python开发基础(3周) 可掌握的核心能力: 1、掌握文件操作、字符编码及转换、函数编程等开发人https://m.luffycity.com/light-course/python
12.电商主流推荐算法概要51CTO博客现在在京东、易迅、亚马逊等看到的主流推荐算法,一般都是基于物品自身相似性(不依赖于用户数据,没有冷启动问题)、基于用户浏览、喜欢、购买等数据的协同过滤推荐(用户纬度和商品纬度)。 其实这些推荐算法的核心思路,是很朴素的。 一、基于物品自身相似度:例如衣服A和衣服B,对于它们在分类、价格段、属性、风格、品牌定https://blog.51cto.com/u_16081606/6210192
13.主流大数据平台算法有哪些帆软数字化转型知识库以上这些大数据平台算法各有特长和应用场景,在选择时需要根据具体的业务需求、数据量级和实时性等因素进行权衡,以达到最佳效果。 相关问答FAQs: 主流大数据平台算法有哪些? Hadoop大数据平台算法:Hadoop是最常用的大数据平台之一,其算法包括MapReduce算法、Hive查询语言、HBase分布式数据库、Pig数据分析平台等。MapReduce是Hahttps://www.fanruan.com/blog/article/495/
14.EdgeDetection:C++实现的主流边缘检测算法(CannySobel3.5 双边滤波算法 三、图像增强 四、边缘检测 1. Canny算子 2. Sobel算子 3. Laplace算子 4. Roberts算子 五、MFC实现 1. 框架搭建 2. 功能实现 六、小结 摘要:本文主要介绍了几种主流的图像边缘检测算法,包括Canny算子、Sobel算子、Laplace算子、Roberts算子、Krisch算子、Prewitt算子、Susan角点检测算法等。另外https://gitee.com/yczha/EdgeDetection
15.中国“缺芯少魂”之痛难破解,打破AI核心技术瓶颈才有未来现在,全球AI领域,深度学习已经超越传统机器学习,成为主流算法。但是,机器学习仍未被取代,两者呈现互补的态势。随着深度学习与神经网络算法的结合,不仅降低了算法训练的门槛,更衍生出大量热门算法以及相应的底层构架。 与依赖于芯片的算力不同,算法由于开源代码、自动化工具等助力,门槛相对降低不少,因而成为初创公司不错的https://www.iyiou.com/news/20191129119131
16.几种主流贴图压缩算法的实现原理详解几种主流贴图压缩算法的实现原理详解 对于不同的项目其中关于贴图压缩这块需要针对不同的平台做不同的设置,下面就和大家介绍下在各种平台中常使用的几种贴图压缩格式及其细节,以便更加适宜地选择在特定设备下的压缩格式以便节省资源。关于移动平台和硬件设备与压缩格式的对应关系可以参考下这里,基本上比较清楚了。https://gwb.tencent.com/community/detail/123075