[计算机视觉]算法Runtime69

------------------------>不断更新中<------------------------

定义、原理、应用、优缺点

1.霍夫变换求直线,圆;

2.边缘检测:Canny边缘检测,sobel算子;

3.Ransac直线拟合,fitLine直线拟合;

4.间距扫描线算法,相当于图像算法中的暴力算法。将连续的图像数据(原图数据过大,相当于数据连续)转换为离散的数字信息,使其可用一般性的方法处理。间距取扫描线降低运算量;

5.若要判断,检测某一图像区域,可以先通过简单的采样数据筛选出可能的区域,再在数据量缩小后的筛选过的区域里做其他算法进行进一步的判断;

6.分类器:SVM;

7.神经网络:BP神经网络,CNN;

8.轮廓识别;

9.角点检测;

10.仿射变换,透视变换;

11.若要识别某图像区域,可以利用图像区域本身的特征(如果它有的话)。比如识别身份证时可以利用身份证上文字的分布特征进行识别;

12.图像结构相似度匹配算法SSIM;

13.降噪:模糊滤波cvSmooth,腐蚀,膨胀;

14.FFT

16.SIFT,SURF;

17.NC(normalizedcorrelation)算法;

18.H-S直方图,Hue是色调,Saturation是饱和度;

机器学习:

1.马氏距离

2.Kmeans

3.朴素贝叶斯分类器

优点:超级简单,你只是在做一串计算。如果朴素贝叶斯(NB)条件独立性假设成立,相比于逻辑回归这类的判别模型,朴素贝叶斯分类器将收敛得更快,所以你只需要较小的训练集。而且,即使NB假设不成立,朴素贝叶斯分类器在实践方面仍然表现很好。如果想得到简单快捷的执行效果,这将是个好的选择。

缺点:不能学习特征之间的相互作用(比如,它不能学习出:虽然你喜欢布拉德·皮特和汤姆·克鲁斯的电影,但却不喜欢他们一起合作的电影)。

4.决策树

优点:易于说明和解释(对某些人来说—我不确定自己是否属于这个阵营)。它们可以很容易地处理特征间的相互作用,并且是非参数化的,所以你不用担心异常值或者数据是否线性可分(比如,决策树可以很容易地分辨某特征x的低端是类A,中间是类B,然后高端又是类A的情况)。

缺点:不支持在线学习,所以当有新样本时,你将不得不重建决策树。且容易过拟合,但这也正是诸如随机森林(或提高树)之类的集成方法的切入点。另外,随机森林往往是很多分类问题的赢家(我相信通常略优于支持向量机),它们快速并且可扩展,同时你不须担心要像支持向量机那样调一堆参数,所以它们最近似乎相当受欢迎。

训练速度:

识别速度:

5.Boosting

6.随机森林

7.Haar分类器(boost筛选式级联(cascade)分类器)

训练速度:较慢,十小时甚至一天

识别速度:0.5s级

8.期望最大化

9.K近邻

10.神经网络/多层感知器

优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。

11.SVM

优点:高准确率,为防止过拟合提供了好的理论保证,并且即使你的数据在基础特征空间线性不可分,只要选定一个恰当的核函数,它们仍然能够取得很好的分类效果。它们在超高维空间是常态的文本分类问题中尤其受欢迎。

缺点:它们内存消耗大,难于解释,运行和调参也有些烦人,因此,我认为随机森林正渐渐开始偷走它的“王冠”。

THE END
1.计算机视觉开题报告mob64ca12f4d1ad的技术博客计算机视觉(Computer Vision,CV)是人工智能(AI)和机器学习(ML)领域中的一个重要分支。它的目标是使计算机能够“看”并理解图像和视频中的内容。随着深度学习技术的发展,计算机视觉在图像分类、物体检测、图像分割等任务中的应用日益广泛。 计算机视觉的主要任务 https://blog.51cto.com/u_16213450/12844209
2.人工智能算法的分类与应用人工智能 (AI) 是当前科技领域的热门话题,其核心是各种算法的灵活运用。AI算法不仅实现了智能预测、分类,还在数据挖掘、自然语言处理和推荐系统等领域发挥着重要作用。接下来,我们将以科普的视角,带您深入了解 AI 的主要算法及其广泛应用。 一、监督学习 https://mp.weixin.qq.com/s?__biz=MzI3MzQ1NjMwOA==&mid=2247549220&idx=4&sn=25aa18da4b1e2824371e552b0ca3c8e6&chksm=eb214cffdc56c5e9303367ae4087102996613151dfa3c11fafe88950b683dbc8dadedd63bcaa&scene=27
3.计算机视觉(豆瓣)《计算机视觉——算法与应用》探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与交织之类有趣的大众应用,以便学生能够将其应用于自己的照片和视频,从中获得成就感和乐趣。本书从科学的角度介绍基本的视觉问题,将成像过程的物理模型公式化,然后在此https://book.douban.com/subject/10465997/
4.计算机视觉算法及其特点计算机视觉计算机视觉是人工智能领域中的一个重要分支,旨在使计算机能够模拟人类视觉系统,从图像或视频中获取信息并进行分析和理解。计算机视觉算法是实现这一目标的关键组成部分。本文将介绍几种常见的计算机视觉算法,包括特征提取、目标检测、图像分割和图像识别,并提供相应的源代码示例。 https://download.csdn.net/blog/column/12443612/132969050
5.「算法工程师计算机视觉招聘信息」BOSS直聘为您提供2024年算法工程师计算机视觉信息,BOSS直聘在线开聊约面试,及时反馈,让算法工程师计算机视觉更便捷,找工作就上BOSS直聘!https://www.zhipin.com/zhaopin/591c85ea4a0f52b71nV-09W9GQ~~/
6.常用视觉算法在视觉算法中,常用的算法包括: 1.边缘检测算法:边缘检测算法是一种常用的图像处理算法,它主要用于检测图像中的边缘。常用的边缘检测算法有Sobel算法、Prewitt算法和Canny算法等。 2.特征提取算法:特征提取算法是一种常用的计算机视觉算法,它主要用于从图像或视频中提取出有用的特征。常用的特征提取算法有SIFT算法、SURFhttps://wenku.baidu.com/view/01d8d0b97c192279168884868762caaedc33ba75.html
7.计算机视觉图像分割中FCNDeepLabSegNetU简介:【计算机视觉】图像分割中FCN、DeepLab、SegNet、U-Net、Mask R-CNN等算法的讲解(图文解释 超详细) 觉得有帮助请点赞关注收藏~~~ 一、FCN分割算法 全卷积神经网络目标分割算法能够端到端的得到每个像素的目标分类结果,与传统的卷积神经网络只能输入固定大小图像和在网络的末端使用几个全连接层得到固定长度的特征https://developer.aliyun.com/article/1399024
8.计算机视觉(CV)的算法有哪些,具体都有哪些特点?4. 3D视觉算法:三维计算机视觉主要利用深度相机、三维扫描以及点云数据进行分析和处理,比如KinectFusion、https://www.zhihu.com/question/342633770/answer/2934657383
9.《计算机视觉:计算理论与算法基础》.pdf大小:8.29 MB 字数:约1.01万字 发布时间:2018-11-10发布于广东 浏览人气:1052 下载次数:仅上传者可见 收藏次数:0 需要金币:*** 金币(10金币=人民币1元) 《计算机视觉:计算理论与算法基础》.pdf 关闭预览 想预览更多内容,点击免费在线预览全文 免费在线预览全文 https://max.book118.com/html/2018/1107/8037007032001132.shtm
10.计算机视觉——典型的目标检测算法(SPPNet算法)(四)【嵌牛鼻子】计算机视觉 【嵌牛提问】如何理解目标检测算法——SPP-Net 【嵌牛正文】 针对R-CNN对所有候选区域分别提取特征、计算量大的问题,2015年He等提出空间金字塔网络(Spatial Pyramid Pooling Network,SPP-Net)。SPP-Net 在最后一个卷积层和全连接层之间加入空间金字塔结构;使用多个标准尺度微调器对图像进行分割,https://www.jianshu.com/p/8cbbd5465929
11.新算法为计算机视觉与自然语言处理统一“建模”日前,计算机视觉领域三大顶会之一的ICCV 2021在线上举行。来自微软亚洲研究院、中国科学技术大学、西安交通大学以及清华大学的研究者们关于Swin Transformer(移位窗口通用视觉神经网络)的研究,从全世界共6152篇投稿中脱颖而出,获得 ICCV 2021马尔奖(最佳论文)。 https://www.ncsti.gov.cn/kjdt/ztbd/xydrgzn/cy/znzz/202112/t20211216_53431.html
12.什么是计算机视觉?数据科学NVIDIA术语表这种类型的架构对一系列图像数据执行类似的计算。GPU 的单指令多数据 (SIMD) 功能使其适合运行计算机视觉任务,这些任务通常涉及对整个图像进行类似的计算。具体而言,NVIDIA GPU 可显著加速计算机视觉操作,为其他工作释放 CPU。 此外,在同一台机器上可以使用多个 GPU,创建能够并行运行多个计算机视觉算法的架构。https://www.nvidia.cn/glossary/data-science/computer-vision/
13.极市开发者社区极市视觉算法开发者社区,专注于为计算机视觉算法开发者提供CV前沿学术理论和高质量技术干货,大咖技术分享,顶会论文,书籍教程,算法竞赛,数据集下载,项目需求,求职内推等内容。https://bbs.cvmart.net/
14.人工智能技术包含七个关键技术三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。 六、生物特征识别 生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器https://www.meipian.cn/1r1ofdcy