数据挖掘经典案例

巅峰之旅之案例一:网上书店关联销售

提出问题

网上书店现在有了很强的市场和比较固定的大量的客户。为了促进网上书店的销售量的增长,各网上书店采取了各种方式,给客户提供更多更丰富的书籍,提供更优质服务,等方式吸引更多的读者。

那么,怎么来实现这样一个效果呢?

解决步骤

具体步骤如下:

第一步:定义数据源。选取的为网上书店的销售记录数据源(最主要的是User表和Sales表)。

第四步、设置算法参数,部署挖掘模型。

B:规则:“规则”选项卡显示关联算法发现的规则。“规则”选项卡包含一个具有以下列的网格:“概率”、“重要性”和“规则”。概率说明出现规则结果的可能性。重要性用于度量规则的用途。尽管规则出现的概率可能很高,但规则自身的用途可能并不重要。重要性列就是说明这一情况的。例如,如果每个项集都包含属性的某个特定状态,那么,即使概率非常高,预测状态的规则也并不重要。重要性越高,规则越重要。

C:关联网络:节点间的箭头代表项之间有关联。箭头的方向表示按照算法发现的规则确定的项之间的关联。

效果展示

1、我们可以看到在上图中,绿色的是我们选择的节点,橙色的是可以预测所选节点的节点,也就是说如果消费者买了《月光宝盒(2VCD)》的话,那么我们可以给该消费者推荐《乱世佳人(上集,2VCD)》。紫色的是和所选节点能够双向预测的,即买了《大圣娶亲》,推荐《乱世佳人(上集,2VCD)》;同样,买了《乱世佳人(上集,2VCD)》,推荐《大圣娶亲》。这样我们就很容易看到经过关联算法计算出来的书籍之间的关联性。如图3所示效果。

2、我们也可以通过写DMX语句来实现预测查询。

SELECTPredictAssociation([User].[Sales],include_statistics,10)

From[User]

NATURALPREDICTIONJOIN

(SELECT(SELECT'月光宝盒(2VCD)'AS[BookName])AS[Sales])ASt

我们可以把客户维度的NumberCarsOwned属性放在展示区域的行上,把度量值OrderQuantity放在列上,查看拥有0-4辆汽车的客户的订购所有产品的数量。同样,我们也可以类似的查看其他属性的情况。但是,如果我们要把客户维度的某些属性综合考虑来分类,例如:我们要把高收入、高学历、高消费的客户作为一个群体,把高收入,低学历、高消费的客户作为一个群体,等等,然后,基于这些群体来浏览分析,销售情况,如何来实现呢?

B:按照向导,选取事例键DimCustomer,

C:在选取事例级别列对话框里面,选择一些属性和度量值,我们这里选取EnglishEducation、HouseOwnerFlag、NumberCarsOwned、YearlyIncome、SalesAmount。如图5所示。

D:在完成对话框里面,我们输入挖掘结构名称CustomerSturcture,输入挖掘模型名称CustomerClustering。必须注意的是,一是一定要选择创建挖掘模型维度,输入挖掘模型维度的名称CustomerClustering;二是一定要选择使用挖掘模型维度创建多维数据集Sales_DM。

THE END
1.数据挖掘:你必须知道的32个经典案例Yami数据挖掘:你必须知道的32个经典案例, Brand: Jingdong book, Database-Yami. 100% authentic, 30-day return guarantee, authorized retailer, low price.https://www.yamibuy.com/en/goods.php?id=37352
2.数据挖掘:实用案例分析这类人员可以在理解数据挖掘原理及建模过程的基础上,结合数据挖掘案例完成精确营销、客户分群、交叉销售、客户流失分析、客户信用记分、欺诈发现等数据挖掘应用的需求分析和设计。 数据挖掘开发人员。 这类人员可以在理解数据挖掘应用需求和设计方案的基础上,结合图书提供的基于第三方接口快速完成数据挖掘应用的编程实现。 https://www.tipdm.org/tj/535.jhtml
3.数据挖掘:实用案例分析完整pdf扫描版[103MB]电子书下载《数据挖掘:实用案例分析》是数据挖掘实战领域颇具特色的一部作品,作者曾为10余个行业上百家大型企业提供数据挖掘服务,本书是其在数据挖掘领域探索近10年的经验总结之作。全书以实践和实用为宗旨,深度与广度兼顾,实践与理论并举。 《数据挖掘:实用案例分析》共12章,分三个部分。第一部分是基础篇(第1~4章),主要https://www.jb51.net/books/629234.html
4.数据挖掘实用案例分析PDF电子书常用数据挖掘算法总结及Python实现.pdf 主要包括以下内容: 第一部分 数据挖掘与机器学习数学基础 第二部分 机器学习概述 第三部分 监督学习---分类与回归 第四部分 非监督学习---聚类与关联分析 第五部分 Python 数据预处理 第六部分 数据结构与算法 第七部分 SQL 知识 第八部分 数据挖掘案例分析 https://www.iteye.com/resource/qq_34736062-9711211
5.详细解读给数据挖掘新手的6个案例那么,怎么才能更好地掌握数据挖掘,最高效的学习路径应该是什么样的呢? 为此,超级数学建模携手唐宇迪老师以Python为基础,为你带来实用度与趣味度满分的《Python数据挖掘实战》课程! 作为数据挖掘的入门基础课程,并没有只是灌输大量理论,而是循序渐进,从基础知识结合操作讲起,再进阶提升,最后结合案例进行实战训练。 https://blog.csdn.net/UFv59to8/article/details/79303272
6.数据挖掘实际案例查询分析挖掘的目标数据挖掘是指用某些方法和工具,对数据进行分析,发现隐藏规律并利的一种方法。下面我们将通过具体的数据挖掘实际案例来学习什么是数据挖掘。 某社会机构,收集了大量的学生考大学的数据。该机构希望找出一些规律,以推动更多的学生考大学。该机构委托你来做这个分析工作,给出具体的可以推动更多学生考大学的建议。 https://www.shulanxt.com/doc/encyc/slxng
7.数据挖掘32个经典案例数据挖掘的成功案例数据挖掘32个经典案例 数据挖掘的成功案例 这里展示一个完整的数据挖掘实例,以供参考。数据挖掘是为了从数据中挖掘出有用的信息,提供决策依据,data driven decision making,而不是people driven或者boss driven。(减少拍脑袋有助于减少脱发,不信看你们公司大佬们都脱成啥样了)https://blog.51cto.com/u_16213654/7549710
8.数据挖掘的十大案例有哪些帆软数字化转型知识库数据挖掘的十大案例包括:市场篮子分析、客户细分、信用评分、欺诈检测、医疗诊断、推荐系统、社交网络分析、文本挖掘、情感分析、预测性维护。数据挖掘在各行各业中发挥了重要作用,其中“市场篮子分析”是一个典型的案例。市场篮子分析通过挖掘顾客购物篮中的商品关联性,可以帮助零售商优化商品摆放、设计促销策略。例如,通https://www.fanruan.com/blog/article/593742/
9.50个BA分析工具第二十一个DataMining(数据挖掘)数据分析的四个境界: 1.What happen?发生了什么 2.Why did it happen?这件事为什么发生。我们的因果关系是什么 3.What will happen?什么会发生,要求这个趋势分析 4.How can we make it happen?我要做什么,才会让它发生和不让它发生 应用案例 几个简单的数据挖掘案例分享: 基于分类模型的案例 邮箱系统如何分https://maimai.cn/article/detail?fid=1478662341&efid=JLgH4dfGCstru6TzScYN1A
10.清华大学出版社图书详情"(1)系统性比较强,基本覆盖了数据挖掘领域的主流应用领域。 (2)紧贴实际应用,案例丰富,强调实验,培养学生动手能力。 (3)强调案例的原创性,配套资料齐全。 "作者:赵卫东、董亮 丛书名:大数据技术与应用专业系列教材 定价:89元 印次:2-1 ISBN:9787302658092 出版日期:2024.03.01 印刷日期:2024.03.20http://www.tup.tsinghua.edu.cn/booksCenter/book_10194201.html
11.数据挖掘:实用案例分析(豆瓣)《数据挖掘:实用案例分析》是数据挖掘实战领域颇具特色的一部作品,作者曾为10余个行业上百家大型企业提供数据挖掘服务,本书是其在数据挖掘领域探索近10年的经验总结之作。全书以实践和实用为宗旨,深度与广度兼顾,实践与理论并举。 《数据挖掘:实用案例分析》共12章,分三个部分。第一部分是基础篇(第1~4章),主要https://book.douban.com/subject/24855183/
12.数据挖掘成功案例3篇.doc数据挖掘成功案例3篇.doc,数据挖掘成功案例3篇 篇一:数据挖掘应用成功案例 1电话收费和管理办法 加拿大BC省电话公司要求加拿大SimonFraser大学KDD研究组根据其拥有的十多年的客户数据,总结、分析并提出新的电话收费和管理办法,制定既有利于公司又有利于客户的优惠政策。 https://max.book118.com/html/2017/0118/84897835.shtm
13.《数据挖掘:你必须知道的32个经典案例(第2版)》(任昱衡等)简介当当网图书频道在线销售正版《数据挖掘:你必须知道的32个经典案例(第2版)》,作者:任昱衡 等,出版社:电子工业出版社。最新《数据挖掘:你必须知道的32个经典案例(第2版)》简介、书评、试读、价格、图片等相关信息,尽在DangDang.com,网购《数据挖掘:你必须知道http://product.dangdang.com/25480156.html
14.多角度看数据挖掘经典案例购物篮分析关联分析是数据挖掘体系中重要的组成部分之一,其代表性的案例即为“购物篮分析”。我们以数据挖掘软件Clementine自带的一个购物篮分析的数据为例,从多个方面来探讨这一方面的内容。 关联分析要解决的主要问题是:一群用户购买了很多产品之后,哪些产品同时购买的几率比较高?买了A产品的同时买哪个产品的几率比较高?可能是https://blog.itpub.net/23306587/viewspace-1119010/
15.数据挖掘算法与现实生活中的应用案例腾讯云开发者社区数据挖掘算法与现实生活中的应用案例 “如何分辨出垃圾邮件”、“如何判断一笔交易是否属于欺诈”、“如何判断红酒的品质和档次”、“扫描王是如何做到文字识别的”、“如何判断佚名的著作是否出自某位名家之手”、“如何判断一个细胞是否属于肿瘤细胞”等等,这些问题似乎都很专业,都不太好回答。但是,如果了解一点点https://cloud.tencent.com/developer/article/1058153
16.案例数据挖掘银行营销【案例-数据挖掘】银行营销 X_Ran_0a11关注IP属地: 河南 0.5762019.08.20 02:21:34字数7,062阅读7,892 数据来源kaggle(uci数据集): https://www.kaggle.com/janiobachmann/bank-marketing-dataset/kernels目录: 0 项目概述 一、业务分析 1.1 基本属性 1.2 业务联系 1.3 最近一次营销活动 1.4 目标数据 二、https://www.jianshu.com/p/bb5a827b2bda
17.数据挖掘:你必须知道的32个经典案例首页 馆藏纸本 图书详情 数据挖掘 :你必须知道的32个经典案例 出版社:电子工业出版社 ISBN:9787121351129 出版年:2018 作者:任昱衡 资源类型:图书 细分类型:中文文献 收藏单位馆藏地在架状态索书号 自动化所图书流通库已借出F713.51/ 234 5浏览量 问图书管理员 https://www.las.ac.cn/front/book/detail?id=255a02b291370428cd51a7cd5e56f076