数据挖掘工程师需要的技能(17篇)

1.负责用户特征、车辆特征等挖掘,并能结合应用场景进行抽象建模;

2.负责用户意图、偏好及车辆等建模画像工作;

3.负责梳理各业务场景下用户生命轨迹,挖掘价值点,建立用户行为预测模型;

4.负责挖掘用户、车源的关联关系,实体对象相似性计算,构建供需匹配推荐模型

任职资格:

2.掌握常用的机器学习算法,如关联规则、分类算法、聚类算法;

3.掌握至少一门编程语言,如python、c、c++、java等;

4.理解数据库原理,掌握sql,熟练使用hadoop系列工具;

5.有较强的结构化思维、逻辑思维、数据思维,具备独立思考问题解决问题的能力;

6.有用户画像建模及推荐系统工作经验者优先。

职责:

1、参与k12教育行业大数据分析、大数据处理、数据挖掘等系统的设计和开发;

2、根据业务需求,基于海量学生学习和行为数据(如错题等)进行数学建模,设计并开发高效算法,并对模型及算法进行验证和实现,通过产品和技术提升教学和服务的效率和质量;

3、应用各种机器学习、数据挖掘技术进行数据分析与用户画像;

4、设计和构建基于用户行为特征的平台化画像服务能力,并建立用户画像产品的评估机制和监控体系;

3、具备深厚的数据建模(机器学习、数据挖掘)工作经验;有大数据处理实际开发经验(hadoop、spark,、flink、elasticsearch、hive、hbase);

4、熟悉各种特征提取、数据降维等数据处理技术;从事过用户画像等方面工作;

6、具备较强的沟通能力和优秀的逻辑思维能力,擅长从海量数据中发现有价值的规律;

7、自我驱动能力强,踏实勤勉,对有挑战的问题充满激情;愿意在创业氛围中工作;

8、能够阅读英文技术文档及论文,具有良好的自学能力,可以快速学习和掌握新的方法和技术;

职责:

1、进行住宅数据抽取、数据清洗、数据探索、数据建模分析等工作;

3、负责房地产估值数据系统的开发;

5、参与系统文档的撰写、维护。

岗位要求:

1、数学、统计学、计算机等专业硕士毕业,具有数据挖掘领域1年以上开发经验;

2、至少掌握python、scala、r等语言其中一种,python优先;

3、掌握关系型数据库oracle、mysql、postgresql的使用;

4、熟悉常见的机器学习算法如knn、决策树、随机森林数、逻辑回归、svm等算法,熟悉常见深度学习算法cnn、lstm和神经网络;

1.参与海量数据挖掘平台设计与开发;

2.负责底层测试数据的解析开发;

3.负责数据挖掘需求模型设计与开发;

4.负责海量数据挖掘的分布式部署及其调优工作。

任职资格:

3.对mysql及任意一个nosql有深入的了解;

4.做事具有条理性,具有良好的自学能力、分析问题以及解决问题的能力;

1、负责caic各类数据平台的搭建及系统开发实现;

2、负责系统技术运维及各类技术问题处理;

3、负责系统间接口数据标准规范制定;

2、实际项目开发经验;

3、framework、c#语言,熟练使用visual开发工具;

4、熟练使用office软件,数据库产品,精通sqlserver等大型数据库系统开发,熟练使用js框架,如jquery/yui等,并解读过源码,熟练多框架加分,精通ajax技术;

5、有良好的沟通能力、处理解决问题的能力、强烈的责任感和敬业精神;

6、工作认真负责,且主动性强,抗压能力强,能快速融入团队,有较强分析、沟通和协调能力。

2、负责大数据可视化研究及平台构建及优化工作;

3、负责数据挖掘分析体系的建设,并建立和规范数据挖掘模型标准;

4、协助项目团队做好数据和应用的对接,完成项目的执行及交付;

5、配合架构师进行技术攻关和核心挖掘算法改善。

3、精通r、matlab、python等至少一门数据分析语言和oracle、sqlserver、mysql、hbase等至少一门主流数据库;

4、至少熟悉一种大数据可视化平台echart,tableau等;

5、熟悉hadoop、hive、spark等大数据处理平台优先;熟悉java/web开发及面向对象的编程方式者优先;

6、良好的逻辑思维能力,对数据敏感,能够发现关键数据、抓住核心问题;

7、具备团队合作意识和创新意识,具有较强的学习能力和解决问题的能力,热爱研究算法和新技术者优先。

1、负责产品数据库研发,参与系统整体架构设计;

3、负责产品模块的数据层分析、设计、编码、测试;

4、能够独立完成产品数据层开发任务,负责各类数据接口开发;

5、负责各类型数据操作处理和兼容问题;数据库复杂sql开发和调优。

任职要求:

2、5年以上java开发经验,有springboot框架开发经验,计算机硕士以上学历可酌情考虑;

3、系统掌握数据库原理和知识,精通sql语法规则和特点,有3年以上sql编写经验。熟悉主流数据库技术,良好的数据库基础知识,具备良好的sql编写与优化能力,熟练掌握oracle、sqlserver、mysql、postgresql等数据库语言,能熟练应用分析函数、存储过程;

4、熟练掌握数据库脚本的性能调优方法,有大量数据处理或开发经验者优先;

5、熟悉数据库建模,熟练运用建模工具进行产品的分析和设计;

6、有较强的交流能力,能很好的理解项目需求;

7、具备良好的自学能力和独立解决问题的能力;

8、沟通能力良好,具备团队合作精神,能适应一定压力开展工作。

1.参与打造数据中心内容的规划、设计、开发和优化工作,实现高质量数据的互通与共享;

2.参与数据模型体系构建及数据主题设计和开发,搭建离线、实时数据仓库;

3.参与数据产品与应用的数据研发;

4.负责日常应用系统监控,发现异常问题及时分发,并跟进后续处理;

5.编写python程序,或etl技术完成日常数据抽取和整理任务,可独立进行数据分析;

1.熟悉etl开发、数据仓库设计流程,熟悉oracle,mssqlserver等主流数据库,表结构设计,存储过程编写;

2.熟练掌握常用linux命令,具备shell编程能力,熟练掌握python编程语言

3.具有较强的语言表达和沟通能力,良好的团队合作精神

4.逻辑思维能力强,对数据敏感,有较强学习能力和创新思维;

5.具有高度的责任感和敬业精神,能够承受较大的工作压力

(2)按要求完成数据分析报告、建模报告、数据报表等;

(3)对数据进行深度挖掘和建模,做运营和用户等各方面分析,深度挖掘运营优化和用户行为特征等,推动分析问题的解决,为业务决策提供日常支持;

(1)大专以上学历,统计、数学、计算机、软件专业优先;

(2)熟练使用python,mysql语言,具有一定的工程能力,完善的文档和注释习惯。熟悉jupyterlab远程代码编写环境,linux常用命令。会使用r,java,scala等语言更佳。

(3)熟悉数据分析过程,能够完成数据抽取、数据处理、数据建模、数据分析报告等任务;

(4)一定的数据挖掘/机器学习理论和技术基础,了解常用的数据挖掘算法如:聚类模型、线性回归、逻辑回归、分类模型、决策树模型等。

1、对现有大量数据源进行深度挖掘、解析、特征分析,利用数据建立建模;

2、核心指标的监控和跟踪分析,并对异常波动情况进行分析和问题定位;

3、负责监控数据的可视化和自动化;

职位要求:

2、了解lr、gbdt、xgboost、dnn和nlp等常用模型的开源工具,了解开源可视化工具;

5、做事细心,具有很强的责任心,独立解决问题的能力;

1、负责客户业务数据分析工作、挖掘数据分析需求

2、负责制定和实施数据分析方案

3、负责数据挖掘类项目的建模

4、负责根据数据分析和业务挖掘结果对客户业务提出优化建议或决策支持

5、负责通过数据持续优化业务流程

6、其他工作

2、熟练使用spss、sas或其他统计分析工具辅助工作

3、至少掌握一门数据分析语言,如r/python

4、对数据高度敏感,能够通过数据分析问题、解决问题;

5、有数据分析和挖掘项目优先经验者

1、对海量业务数据进行分析,并利用算法挖掘用户行为特征,发现潜在规律,建立机器学习算法并优化;

2、利用数据挖掘技术分析、预测用户的消费行为;

3、建立各种业务逻辑模型和数学模型,帮助公司改善运营管理,节省成本。

1、大学本科及以上学历;

3、本科5年以上同岗位工作经验,研究生3年以上同岗位工作经验;

4、对统计学和数据挖掘算法原理有较为深刻的理解,了解数据仓库思想,熟悉spss、sas、r、mahout等数据挖掘软件之一;

5、熟悉决策树、聚类、逻辑回归,关联分析、svm,贝叶斯等数据挖掘算法,有海量数据挖掘的项目经验;

6、有用户行为分析、用户建模、业务建模、数学建模经验优先;

7、良好的逻辑分析能力、分析问题和解决问题的能力,对数据敏感,良好的沟通能力。

1.负责mpp数据库日常维护,业务数据收集整理,对多种数据源的进行集成;

2.负责bi平台搭建和日常维护、需求调研、模型设计工作;

3.涉及部分etl设计、模型设计、开发工作;

4.协助解决bi平台运行日常问题;

5.本职位上班地点:佛山顺德区。

2.熟悉oracle、db2等主流数据库,并对分布式数据库有了解,如果熟悉mpp数据库优先考虑;

4.接触并使用过前端报表开发工作;

5.良好的沟通能力和独立工作能力,良好的团队合作意识与责任心,良好的文档编写能力。

1.负责软件测试、搭建测试环境,按照测试流程、计划以及对产品特性的把握,编写测试案例,确保测试目的的达成;

2.根据测试计划及测试案例,执行测试,在软件生命周期的各个阶段执行相应的测试;

3.根据测试结果,与开发部门等反复沟通测试情况,修正测试中发现的缺陷,完善软件性能;

4.整理测试文档,编写测试总结;

5.设计与编写自动化测试用例、测试工具。

2.有文件系统测试经验者、手机客户端、性能测试、开发及分析经验者优先;

3.熟悉测试理论与方法,熟悉软件测试过程,能够独立完成测试计划及方案设计等工作,有丰富的软件测试技术及文档编写经验;

4.熟悉linux基本操作以及linux环境搭建;

5.具有很好的沟通和协调、表达能力;

6.有较强的学习能力和主动性,责任心强,有良好的团队合作精神和严谨的工作态度,具有独立分析能力和独立解决问题的能力。

1.熟悉vmware虚拟化规划、部署、支持、维护和p2v迁移

2.规划、实施服务器项目、公有云、混合云项目

3.熟悉各类微软产品,尤其是ad及exchange,基础服务器的结构并能提出改善解决方案

4.服务器发生系统故障时的分析与解决

5.微软体系架构的设计

1.具有vcp或微软方面的认证证书

2.精通虚拟化及windows各类应用

3.大专以上学历,计算机专业,英语精通

4.有三年以上从事服务器工程师经验,性格稳重

5.从事过公有云或大型混合云工作者优先

6.有系统集成工作经验者优先

1、负责数据库环境建设、维护、安全管理;

2、负责数据库环境变更、故障异常分析处理;

3、负责数据库日常运行状况监控、容量规划、架构设计等;

4、对运行的数据库进行性能分析和优化,并推进优化工作的有效实施;

5、支持技术咨询,部分售前交流和文档编写;

1、熟悉oracle、sqlserver等主流数据库,具有2年以上数据库管理及数据集成项目经验;

2、精通数据库的安装配置,故障处理,备份恢复操作,能够独立完成数据库日常管理和运维工作;

4、能够熟练运用rac/dataguard/goldengate/streams等高可用技术;

5、有良好的实施方案撰写能力和丰富的实施经验;

6、具有良好的逻辑分析能力、沟通能力和协调能力;

1、负责软件需求的需求分析及需求排期,编写需求分析说明书;

2、负责软件详细设计、系统整合,维护和改进现有系统;

3、熟悉axure、mockplus、visio等软件

4、熟悉主流关系型数据库至少一种(oracle,sqlserver,db2,mysql);

2、具备较强的逻辑思维能力,学习能力和良好的系统思考能力;

3、沟通能力好,工作态度积极阳光,文字功底良好,理解能力强;

4、勤奋好学、积极主动、勇于承担责任迎接挑战,并具良好的团队合作精神;

THE END
1.数据挖掘的分析方法可以划分为关联分析序列模式分析分类分析和数据挖掘是从大量数据中提取有用信息的方法,主要分为四种分析方式:关联分析、序列模式分析、分类分析和聚类分析。在本指南中,我们将详细介绍这四种方法的实现过程,并提供相应的代码示例。 数据挖掘流程 首先,我们需要明确数据挖掘的基本流程,如下表所示: 流程图 https://blog.51cto.com/u_16213297/12863680
2.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn为特定的业务任务选择最佳算法很有挑战性。您可以使用不同的算法来执行同样的业务任务,每个算法会生成不同的结果,而某些算法还会生成多种类型的结果。例如,您不仅可以将 Microsoft 决策数算法用于预测,而且还可以将它用作一种减少数据集的列数的方法,因为决策树能够识别出不影响最终挖掘模型的列。 https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
3.数据挖掘概念流程算法与工具全解析数据挖掘工具简介数据挖掘工具是数据挖掘过程中的重要辅助手段,它们提供了丰富的数据挖掘算法和可视化功能,使得数据挖掘过程更加高效和直观。以下是一些常用的数据挖掘工具: Python:一种流行的编程语言,有丰富的数据挖掘库和工具包,如NumPy、Pandas、Scikit-learn、TensorFlow等,提供了强大的数据处理和分析能力。 https://blog.csdn.net/Echo_3wdiankang/article/details/143492282
4.数据挖掘用哪些工具做帆软数字化转型知识库数据挖掘可以使用R、Python、RapidMiner、KNIME、Weka、SAS、SQL、Hadoop、Tableau、SPSS等工具。其中,Python是最受欢迎的工具之一,因为其强大的库和社区支持使得数据挖掘过程更加高效。Python 拥有丰富的第三方库,如 pandas、NumPy、scikit-learn 和 TensorFlow,这些库提供了从数据预处理到复杂模型构建的全方位支持。Pythonhttps://www.fanruan.com/blog/article/576876/
5.12款常用的数据挖掘工具推荐数据挖掘工具是使用数据挖掘技术从大型数据集中发现并识别模式的计算机软件。数据在当今世界中就意味着金钱,但是因为大多数数据都是非结构化的。因此,拥有数据挖掘工具将成为帮助您获得正确数据的一种方法。下面…https://zhuanlan.zhihu.com/p/451562794
6.数据挖掘七种常用的方法汇总腾讯云开发者社区聚类分群效果可以用向量数据之间的相似度来衡量,向量数据之间的相似度定义为两个向量之间的距离(实时向量数据与聚类中心向量数据),距离越近则相似度越大,即该实时向量数据归为某个聚类。 数据挖掘方法 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它https://cloud.tencent.com/developer/article/1892597
7.生产线后端数据挖掘与处理工具数据挖掘的相关性的制作方法鉴于上述原因,需要有方法和装置来解决以上所指出的一个或多个问题。 发明内容 有利的是,本发明的一个或多个实施例解决了上文中指出的一个或多个问题。尤其是,本发明的一个实施例是一种处理工具优化系统,该系统包括(a)一个数据挖掘引擎,其分析生产线后端成品率数据,以识别与低成品率有关的一个或多个处理工具;https://www.xjishu.com/zhuanli/59/03804918.html
8.教育中的数据挖掘:从思维方式到方法工具在横向的场景应用维度上,本书将在技术工具与应用场景的矩阵图中,展现不同的技术工具如何用于不同场景中的不同问题分析。 ▲点击图片购买 在数据挖掘的众多应用场景中,教育领域很可能是应用前景最广阔的领域:不仅全体人口中有约四分之一是教育人口(学校体系中的教https://mp.weixin.qq.com/s?__biz=MzAxOTM2MzU2Ng==&mid=2651250893&idx=1&sn=81289a4f38350810a95c173ae8253b8f&chksm=803a634cb74dea5af0847a40e79cc206a09737614236df47f3a1771b7fc3c026971656b10889&scene=27
9.数据挖掘(计算机科学)数据挖掘可以与用户或知识库交互。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98/216477
10.大数据金融第二章大数据相关技术指根据业务的需求和目的,运用合适的工具软件和数据挖掘方法对数据仓库中的数据信息进行处理,寻找出特定的数据规律或数据模式,得出有价值的信息和知识。 (二) 对象 数据挖掘的对象:根据信息存储格式,分为关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internethttps://www.jianshu.com/p/d68251554c66
11.计算机系专业课程简介本课程讲授面向过程高级语言构造、算法结构及程序设计的基本方法和技巧。课程以尽量淡化具体语言方式要求学生掌握高级语言数据类型、构造、子程序、结构特 点及掌握相应的语法描述工具。并以引导性教学,要求学生快速掌握C语言,进入以编程为目的实践教学阶段,以培养良好的程序设计风格。 http://eng.stu.edu.cn/jxdt/kcjj/jsjxzykcjj.htm
12.作为Java工程师必看的成神之路——2020年最新Java核心书籍推荐什么是多态、方法重写与重载 Java 的继承与实现 构造函数与默认构造函数 类变量、成员变量和局部变量 成员变量和方法作用域 02 Java 基础知识 → 基本数据类型 8 种基本数据类型:整型、浮点型、布尔型、字符型 整型中 byte、short、int、long 的取值范围 https://maimai.cn/article/detail?fid=1656311323&efid=NSfo2ivUYpeeiMthZ6XLoA
13.数据挖掘知识总结(精选8篇)4、数据库管理系统主要功能:数据定义功能、数据组织存储和管理、数据操纵功能、数据库的事务管理和运行管理、数据库的建立和维护功能、其他。 5、数据库系统:是指在计算机系统中引入数据库后的系统,一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员构成。 https://www.360wenmi.com/f/filep4ahaz92.html
14.数据挖掘各种工具介绍1科学的定义:一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。 二、data mining的工具(摘自百度文库,经自己简单整理): 数据挖掘工具的市场一般分为三个组成部分: a、通用型工具;b、综合/DSS/OLAP数据挖掘工具;c、快速发展的面向特定应用的工具。 https://bbs.pinggu.org/jg/shuju_shujuwajue_1281384_1.html
15.中信所网站(四)数据挖掘的主要方法、工具和实现方式 关联规则挖掘,相似项发现,降维处理,分类与预测,聚类分析,主题建模等。 (五)大数据环境下情报数据分析工具与平台研发 海量数据环境下的资源获取方法,高效的数据建模方法,面向业务的分析模型,可视化应用与服务。 三、培训安排 https://www.istic.ac.cn/html/1/192/215/217/1876511515630297886.html
16.中国医疗保健国际交流促进会循证医学分会2018年年会暨第4届华夏设置了系统评价/Meta分析培训班、高阶Meta分析培训班、临床数据挖掘培训班、临床研究方法学进展学习班、循证中医药论坛、医学实践与探索论坛、双心医学论坛、循证预防医学论坛、循证社会科学论坛等,期间还将会召开指南/共识研讨会、专著/教材编写会等。会议旨在为预防、临床、护理、药学、中医、药物经济学、医学情报学https://cebtm.znhospital.com/detail/125
17.数据挖掘需要哪些必备技能和工具?阅读学术论文和技术博客:关注最新的研究成果和技术进展,通过阅读学术论文和技术博客来了解最新的数据挖掘方法和应用案例。 加入社区和讨论组:参与数据挖掘领域的社交网络和在线讨论组,与其他专业人士交流经验和见解。 数据挖掘作为从海量数据中提取有价值信息的重要工具,需要掌握一系列必备技能和工具。统计学知识、机器学习https://www.cda.cn/view/203660.html
18.什么是数据挖掘和KDD·MachineLearningMastery博客文章翻译我在进入该领域的早期就读过这本书,这个数据挖掘的定义及其与机器学习的关系一直困扰着我。当我应用机器学习方法时,我应用一个看起来像数据挖掘过程的过程,除了我不是试图发现模式本身,而是我试图为一个定义良好的问题找到一个“足够好”的解决方案。 数据挖掘:概念和技术 https://www.kancloud.cn/apachecn/ml-mastery-zh/1951996
19.数据挖掘:实用机器学习工具与技术(原书第3版)中文/英文pdf完整版[138数据挖掘:实用机器学习工具与技术(原书第3版)是机器学习和数据挖掘领域的经典畅销教材,被众多国外名校选为教材。书中详细介绍用于数据挖掘领域的机器学习技术和工具以及实践方法,并且提供了一个公开的数据挖掘工作平台Weka。本书主要内容包括:数据输入/输出、知识表示、数据挖掘技术(决策树、关联规则、基于实例的学习、线https://www.jb51.net/books/581148.html
20.智能化时代学科评价的工具探索!教育评价资讯频道在智能化时代,利用人工智能、大数据技术对学科数据 进行深度挖掘和科学分析,可以将学科评价从基于小样本或不完整信息的评价转化为基于整体信息的多元化科学化评价。本文通过应用聚类、神经网络分析、关联规则分析等数据挖掘方法对学科数据进行建模分析的思考,对智能化时代高校学科评价进行探索。http://www.fjshxedu.cn/news/show.php?itemid=148
21.小智信用征五个维度信息进行综合评分。利用先进的数据挖掘技术、方法和工具,建立 数学模型,用来预测用户未来一段时间发生违约风险的可能性。评分从0-100, 每个分数代表一个违约概率,分数越高,违约概率越低 ●反欺诈用于辅助金融机构对信息数据的真实性进行鉴定和判别。 http://www.smartdata360.com/xzsj/xzxy.html
22.12款最好用的数据挖掘工具免费的数据挖掘工具包括从完整的模型开发环境如Knime和Orange,到各种用Java、c++编写的库,最常见的是Python。数据挖掘中通常涉及到四种任务: 分类:将熟悉的结构概括为新数据的任务 聚类:在数据中以某种方式查找组和结构的任务,而不需要在数据中使用已注意的结构。 http://www.360doc.com/content/12/0121/07/81182751_1058223585.shtml