十大数据挖掘算法及各自优势互联网数据资讯网199IT中文互联网数据研究资讯中心

国际权威的学术组织theIEEEInternationalConferenceonDataMining(ICDM)2006年12月评选出了数据挖掘领域的十大经典算法:C4.5,k-Means,SVM,Apriori,EM,PageRank,AdaBoost,kNN,NaiveBayes,andCART.

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。

1.C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2)在树构造过程中进行剪枝;

3)能够完成对连续属性的离散化处理;

4)能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2.Thek-meansalgorithm即K-Means算法

k-meansalgorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k

3.Supportvectormachines

支持向量机,英文为SupportVectorMachine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.CBurges的《模式识别支持向量机指南》。vanderWalt和Barnard将支持向量机和其他分类器进行了比较。

4.TheApriorialgorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5.最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(DataClustering)领域。

6.PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(LarryPage)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7.AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8.kNN:k-nearestneighborclassification

K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9.NaiveBayes

10.CART:分类与回归树

CART,ClassificationandRegressionTrees。在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

THE END
1.数据挖掘的分析方法可以划分为关联分析序列模式分析分类分析和数据挖掘是从大量数据中提取有用信息的方法,主要分为四种分析方式:关联分析、序列模式分析、分类分析和聚类分析。在本指南中,我们将详细介绍这四种方法的实现过程,并提供相应的代码示例。 数据挖掘流程 首先,我们需要明确数据挖掘的基本流程,如下表所示: 流程图 https://blog.51cto.com/u_16213297/12863680
2.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn为特定的业务任务选择最佳算法很有挑战性。您可以使用不同的算法来执行同样的业务任务,每个算法会生成不同的结果,而某些算法还会生成多种类型的结果。例如,您不仅可以将 Microsoft 决策数算法用于预测,而且还可以将它用作一种减少数据集的列数的方法,因为决策树能够识别出不影响最终挖掘模型的列。 https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
3.数据挖掘概念流程算法与工具全解析数据挖掘工具简介数据挖掘工具是数据挖掘过程中的重要辅助手段,它们提供了丰富的数据挖掘算法和可视化功能,使得数据挖掘过程更加高效和直观。以下是一些常用的数据挖掘工具: Python:一种流行的编程语言,有丰富的数据挖掘库和工具包,如NumPy、Pandas、Scikit-learn、TensorFlow等,提供了强大的数据处理和分析能力。 https://blog.csdn.net/Echo_3wdiankang/article/details/143492282
4.数据挖掘用哪些工具做帆软数字化转型知识库数据挖掘可以使用R、Python、RapidMiner、KNIME、Weka、SAS、SQL、Hadoop、Tableau、SPSS等工具。其中,Python是最受欢迎的工具之一,因为其强大的库和社区支持使得数据挖掘过程更加高效。Python 拥有丰富的第三方库,如 pandas、NumPy、scikit-learn …https://www.fanruan.com/blog/article/576876/
5.数据挖掘七种常用的方法汇总腾讯云开发者社区聚类分群效果可以用向量数据之间的相似度来衡量,向量数据之间的相似度定义为两个向量之间的距离(实时向量数据与聚类中心向量数据),距离越近则相似度越大,即该实时向量数据归为某个聚类。 数据挖掘方法 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它https://cloud.tencent.com/developer/article/1892597
6.UC伯克利等单位提出基于扩散模型的新数据挖掘工具翻译聚类经过大规模预训练的扩散模型(Diffusion Models)可以在各种专业场景中,根据用户输入的文本提示来生成高质量的图像,这一亮眼表现得益于扩散模型框架准确地学习了训练数据的视觉语言表示。基于这一点,本文作者提出,可以将扩散模型作为全新的视觉数据挖掘工具(Data Mining Tools)。假设一个条件扩散模型可以在某个特定的数据分https://www.163.com/dy/article/JHJ8EH4Q0511CQLG.html
7.大数据金融第二章大数据相关技术指根据业务的需求和目的,运用合适的工具软件和数据挖掘方法对数据仓库中的数据信息进行处理,寻找出特定的数据规律或数据模式,得出有价值的信息和知识。 (二) 对象 数据挖掘的对象:根据信息存储格式,分为关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internethttps://www.jianshu.com/p/d68251554c66
8.数据挖掘各种工具介绍1科学的定义:一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。 二、data mining的工具(摘自百度文库,经自己简单整理): 数据挖掘工具的市场一般分为三个组成部分: a、通用型工具;b、综合/DSS/OLAP数据挖掘工具;c、快速发展的面向特定应用的工具。 https://bbs.pinggu.org/jg/shuju_shujuwajue_1281384_1.html
9.作为Java工程师必看的成神之路——2020年最新Java核心书籍推荐什么是多态、方法重写与重载 Java 的继承与实现 构造函数与默认构造函数 类变量、成员变量和局部变量 成员变量和方法作用域 02 Java 基础知识 → 基本数据类型 8 种基本数据类型:整型、浮点型、布尔型、字符型 整型中 byte、short、int、long 的取值范围 https://maimai.cn/article/detail?fid=1656311323&efid=NSfo2ivUYpeeiMthZ6XLoA
10.计算机系专业课程简介本课程讲授面向过程高级语言构造、算法结构及程序设计的基本方法和技巧。课程以尽量淡化具体语言方式要求学生掌握高级语言数据类型、构造、子程序、结构特 点及掌握相应的语法描述工具。并以引导性教学,要求学生快速掌握C语言,进入以编程为目的实践教学阶段,以培养良好的程序设计风格。 http://eng.stu.edu.cn/jxdt/kcjj/jsjxzykcjj.htm
11.数据挖掘知识总结(精选8篇)4、数据库管理系统主要功能:数据定义功能、数据组织存储和管理、数据操纵功能、数据库的事务管理和运行管理、数据库的建立和维护功能、其他。 5、数据库系统:是指在计算机系统中引入数据库后的系统,一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员构成。 https://www.360wenmi.com/f/filep4ahaz92.html
12.中信所网站(四)数据挖掘的主要方法、工具和实现方式 关联规则挖掘,相似项发现,降维处理,分类与预测,聚类分析,主题建模等。 (五)大数据环境下情报数据分析工具与平台研发 海量数据环境下的资源获取方法,高效的数据建模方法,面向业务的分析模型,可视化应用与服务。 三、培训安排 https://www.istic.ac.cn/html/1/192/215/217/1876511515630297886.html
13.暨第4届华夏循证医学与临床研究论坛第10届中国循证与转化医学设置了系统评价/Meta分析培训班、高阶Meta分析培训班、临床数据挖掘培训班、临床研究方法学进展学习班、循证中医药论坛、医学实践与探索论坛、双心医学论坛、循证预防医学论坛、循证社会科学论坛等,期间还将会召开指南/共识研讨会、专著/教材编写会等。会议旨在为预防、临床、护理、药学、中医、药物经济学、医学情报学https://cebtm.znhospital.com/detail/125
14.常用的数据挖掘工具有哪些?声明: 本网站大部分资源来源于用户创建编辑,上传,机构合作,自有兼职答题团队,如有侵犯了你的权益,请发送邮箱到feedback@deepthink.net.cn 本网站将在三个工作日内移除相关内容,刷刷题对内容所造成的任何后果不承担法律上的任何义务或责任 https://www.shuashuati.com/ti/1338f5f8c54f49119571789f18e5d203.html
15.80本值得一读的最佳数据科学书籍(一),站长资讯平台在许多这些长达一章的讲座中,来自Google,Microsoft和eBay等公司的数据科学家通过展示案例研究和它们使用的代码来共享新的算法,方法和模型。如果您熟悉线性代数,概率和统计,并且具有编程经验,那么这本书是数据科学的理想入门。 数学Math 4.多元微积分Multivariate Calculus https://www.west.cn/cms/news/idcnews/2019-12-23/218777.html
16.小智信用征五个维度信息进行综合评分。利用先进的数据挖掘技术、方法和工具,建立 数学模型,用来预测用户未来一段时间发生违约风险的可能性。评分从0-100, 每个分数代表一个违约概率,分数越高,违约概率越低 ●反欺诈用于辅助金融机构对信息数据的真实性进行鉴定和判别。 http://www.smartdata360.com/xzsj/xzxy.html
17.什么是数据挖掘和KDD·MachineLearningMastery博客文章翻译“ KDD领域关注的是开发用于理解数据的方法和技术。 该过程的核心是应用特定的数据挖掘方法进行模式发现和提取。“ 和 “ KDD是指从数据中发现有用知识的整个过程,而数据挖掘是指此过程中的特定步骤。数据挖掘是特定算法的应用,用于从数据中提取模式。“ 作者在图片https://www.kancloud.cn/apachecn/ml-mastery-zh/1951996
18.数据挖掘:实用机器学习工具与技术(原书第3版)中文/英文pdf完整版[138数据挖掘:实用机器学习工具与技术(原书第3版)是机器学习和数据挖掘领域的经典畅销教材,被众多国外名校选为教材。书中详细介绍用于数据挖掘领域的机器学习技术和工具以及实践方法,并且提供了一个公开的数据挖掘工作平台Weka。本书主要内容包括:数据输入/输出、知识表示、数据挖掘技术(决策树、关联规则、基于实例的学习、线https://www.jb51.net/books/581148.html
19.智能化时代学科评价的工具探索!教育评价资讯频道在智能化时代,利用人工智能、大数据技术对学科数据 进行深度挖掘和科学分析,可以将学科评价从基于小样本或不完整信息的评价转化为基于整体信息的多元化科学化评价。本文通过应用聚类、神经网络分析、关联规则分析等数据挖掘方法对学科数据进行建模分析的思考,对智能化时代高校学科评价进行探索。http://www.fjshxedu.cn/news/show.php?itemid=148
20.12款最好用的数据挖掘工具免费的数据挖掘工具包括从完整的模型开发环境如Knime和Orange,到各种用Java、c++编写的库,最常见的是Python。数据挖掘中通常涉及到四种任务: 分类:将熟悉的结构概括为新数据的任务 聚类:在数据中以某种方式查找组和结构的任务,而不需要在数据中使用已注意的结构。 https://blog.itpub.net/69985379/viewspace-2733867/