什么是分析,数据分析决胜未来

------故明君贤将,所以动而胜人,成功处于众者,先知也。先知者,不可取于鬼神,不可象于事,不可验于度,必取于人,知敌之情也。

——《孙子兵法用间篇》

通过上面《孙子兵法》这段话,我们也可以知道古人也在很早就会使利用分析知己知彼,洞察秋毫,决胜千里。

02

什么是分析

一般的定义是为:一种全面的、基于数据驱动的解决问题的策略和方法。分析通过试用逻辑、归纳推理、演绎推理、批判思维、定量阀(结合数据)等手段,来检验和分析现象,从而确定其本质特征。

分析的概念

1.商业智能和报表

关于分析和商业智能的的区别,几乎没有形成过共识。有些人将分析归类为商业智能的一个子集,而另一些人则把它归为完全不同的类别。

大多数商业智能应用的局限性并不在于技术的限制,而在于分析的深度和为行动提供依据的真正洞察力。例如,告诉我们已经发生了什么事情并不能帮助我们决定如何行动以改变未来,这样的结果往往通过离线分析可以得到。分析的真正责任是形成可行动的,可操作的洞察力,从而能够帮助我们了解已经发生的事情(在什么地点发生,为什么会发生,在什么条件下发生)预测出未来可能发生什么,以及我们可以做什么来影响和优化未来的结果。

图1:商业智能(BI)仪表盘

而报表,是用来描述有关现象的信息展示技术,通常位于数据传递管道的尾部,在那里可以直观地访问数据和结果。而另一方面,分析则超越了对数据的描述,它真正理解了这个现象的内在规律,从而来预测、优化和预判未来应采取的适当行动。

2.大数据

大数据(BigData)是一种描述不和谐信息的方法、在将数据转化为洞察能力的过程中,组织必须处理这些难以处理的信息。如果将大数据描述当今信息复杂的概念,那分析就可以帮助我们以主动的方式(预测性和规范性)来分析复杂性,而不是以被动的方式(BI,商业智能)来应对。

3.数据科学

数据科学是一门科学学科,它利用统计学和数学等领域的定量方法及现代技术,开发出用于发现模式、预测结果和为复杂问题找到最佳解决方案的算法。

数据科学和分析的区别在于,数据科学可以帮助甚至支持自动化实现对数据的分析,但是分析是一种以人为中心的策略,它充分利用各种工具,包括那些在数据科学中发现的工具,来理解事物现象之间的真正本质。

4.边缘分析

边缘分析一般指的是分布式分析,分析被内置到一些机器或系统中,通过这种内置的方式,信息的生成与收集已经成为企业“下意识”的自主活动。边缘分析通常与智能设备,物联网(IoT)联系在一起,把分析嵌入到收集设备上完成的,给物联网带来独特的价值机会。

5.信息学

信息学(informatics)是信息技术和信息管理的交叉学科。在实践中,信息学涉及用于数据存储和检索的处理技术。从本质上讲,信息学讨论信息是如何管理的,指的是支持流程化工作流的系统和数据生态系统,而不是对其中发现的数据进行分析。

在信息科学中经常谈到的健康信息学,它专门用于保健医疗研究,是介于健康信息技术和健康信息管理之间的一种专业技术,它将信息技术、通信和保健结合起来,以提高病人护理的质量和安全性。在下图中,我们可以看出,它位于人、信息和技术三者交汇的中心。

分析集成了所有这些概念,并依赖于底层数据、支持技术和信息管理过程来实现这一目标。

图2:健康信息管理、健康信息技术和信息学之间的区别

6.人工智能与认知计算

人工智能(AI)是一门“让计算机做需要人类智能才能做的事情的科学”。

人工智能和机器学习的区别在于,人工智能是指利用计算机完成模式的识别与探索这类“智能”工作的广义概念,而机器学习是人工智能的子集,它主要利用计算机从数据中学习的概念。

机器学习可以根据数据进行学习和预测,不是仅仅根据特定的一组规则或指令完成事先规划好的操作,而是利用算法训练来自主识别大量数据中的模式。

03

分析方法论

1.应用统计与数学

图3:统计与其他定量科学之间的关系

数学的思维是演绎性的,就是通过一般定律或原则来推断某一特定实例,而统计推理是归纳性的,就是从具体实例中提炼一般规律。这种差异在分析环境下是很重要的,因为我们将归纳推理和演绎推理应用与分析解决不同的问题。因此,将数学和统计都应用到分析领域是适当的和必要的。

3.自然语言处理

自然语言处理(NaturalLanguageProcess,NLP)是通过计算机来理解和生成“自然语言”的方法。NLP专注人类语言和计算机之间相互交互的研究领域,NLP的目标是理解计算机文本中的自然语言,用于文本分类、提取和总结。例如:在分析过程中,我们获取过去的描述信息(如,文本、文档、推文、演讲),并对它们进行语义分类或情绪理解,处理过的文本将作为分析过程的输入,用于预测建模、决策分析、搜索或回答问题的机器人。

下图描述了一个完整的自然语言处理的普遍过程。

图5:自然语言处理过程示意图

4.文本挖掘与文本分析

文本挖掘处理文本数据本身,文本分析涵盖范围比较广泛,通常包括应用统计分析、机器学习和其他一些高级分析技术,但通常被认为等同于文本挖掘。

5.机器学习

机器学习的核心是使用算法来建立量化分析模型,帮助计算机模型从数据中“学习”。它同以人为中心的处理过程不同,它是由计算机学习和发现隐藏在数据中的模式,而不是由人去直接建立模型。一般而言,机器学习中模型建立和模型管理的概念是指能够持续并重复开展后续的决策流程,而不是高度人工参与的常常基于统计手段的分析。

随着近年来计算能力的进步,机器学习可以用来自动地实现针对大数据的复杂数学计算,而这在以前是不可能实现的。

机器学习常见的方法如下图:

图6:机器学习常用的技术归纳

6.数据挖掘

数据挖掘是指在大型数据集中发现和解释规律模式,以解决业务问题的过程。数据挖掘作为一种分析大型数据库以生成新的或与众不同的信息方法而被广泛使用。

数据挖掘采用传统的统计方法,以及人工智能和机器学习技术,目的是在我们拥有的数据中识别出以前未知的模式并进行预测。

04

分析的目的

分析是一种支持变革的全面战略,它为干预措施或战略转型提供信息。分析的目的是支持数据驱动的、基于事实的探索过程。这一切是为了建立信心,推动我们了解知识,并利用这些知识来理解、解释、预测和优化。

总的来说,分析的主要目的主要有以下四点:

1.分析是关于改善结果的活动

我们通过分析来理解、描述和解决问题,并通过分析做出决策和创造洞察力,以推动变革。我们用我们所知道的来理解我们的世界:描述、发现、预测并给出建议。

2.分析是关于创造价值的活动

结果是分析的一个关键组成部分,我们通过分析要创造一些有价值的东西,否则分析将无任何意义。

3.分析是关于发现的活动

如何我们常用的商业智能是关于认知可知的事物,那么分析可以帮助我们探索未知的事物。分析的力量在与它支持我们对未知探索,我们利用推理和理解能力来挖掘数据中隐藏的模式。

4.分析是关于促成变革的活动

最后,关于变革,很少人喜欢或者主动拥抱变革,但变革是不可避免,完全不变的组织几乎不存在。推动组织变革的动力可以有多种形式,对于组织来说,可能是以危机的形式出现,比如灾难、利润下降、政府强制要求、系统性失败或者公共卫生危机等。

05

总结

在很大程度上,分析是一项有弹性的工作,因为它能够影响我们的工作方式,我们所做的决策以及我们取得的成果。分析常常与大数据、数据科学、信息学、甚至商业智能(BI)等放在一起讨论。

分析是一种组织战略,也是一个过程。对于企业来说分析不是终点,而是获得洞察力以实现变革的过程,分析是将数据转化为切实可行的措施的艺术和科学。

推荐阅读

数据分析的价值是什么?

经常有同学在工作中抱怨,感觉“做的分析没有啥业务价值,报表丢出去了也没回应”。到底怎么做才能让数据分析体现价值,今天结合一个具体场景,详细讲解一下。问题场景…

1,412

数据分析与数据挖掘的区别是什么?

数据分析可以分为广义的数据分析和狭义的数据分析,广义的数据分析就包括狭义的数据分析和数据挖掘,我们常说的数据分析就是指狭义的数据分析,下面我们来看一下数据分析与…

1,832

小会计做着做着,就跑去做数据分析了,分析做着…

最让我头疼的应该是在会议上面做汇报吧,内心是胆怯的。我觉得认真也是一种天赋的。特别是高压下还能仔细认真不出错。有时候不是不认真,而是工作太多又要求几天内出报表,…

THE END
1.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn为特定的业务任务选择最佳算法很有挑战性。您可以使用不同的算法来执行同样的业务任务,每个算法会生成不同的结果,而某些算法还会生成多种类型的结果。例如,您不仅可以将 Microsoft 决策数算法用于预测,而且还可以将它用作一种减少数据集的列数的方法,因为决策树能够识别出不影响最终挖掘模型的列。 https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
2.什么是数据挖掘?基本步骤,使用智能方法提取数据模式; 模式评估 根据某种兴趣度,识别代表知识的真正有趣的模式; 知识表示 使用可视化和知识表示技术,向用户提供挖掘的知识。 数据挖掘方法论 业务理解(business understanding) 从商业角度理解项目的目标和要求,接着把这些理解知识通过理论分析转化为数据挖掘可操作的问题,制定实现目标的初步https://zhuanlan.zhihu.com/p/113445650
3.PART1数据挖掘概论—数据挖掘方法论PART 1 数据挖掘概论 — 数据挖掘方法论 目录 数据库知识发掘步骤 数据挖掘技术的产业标准 CRISP-DM SEMMA 数据库知识发掘步骤 数据库知识发掘(Knowledge Discovery inDatabase,KDD)是从数据库中的大量数据中发现不明显、之前未知、可能有用的知识。 知识发掘流程(Knowledge Discovery Process)包括属性选择(attribute https://blog.csdn.net/L_15156024189/article/details/143320650
4.数据挖掘七种常用的方法汇总腾讯云开发者社区聚类分群效果可以用向量数据之间的相似度来衡量,向量数据之间的相似度定义为两个向量之间的距离(实时向量数据与聚类中心向量数据),距离越近则相似度越大,即该实时向量数据归为某个聚类。 数据挖掘方法 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它https://cloud.tencent.com/developer/article/1892597
5.数据挖掘与分析的六种经典方法论最近梳理了一下数据挖掘与分析的常用方法论,这里简要介绍6种模型。 1、CRISP-DM 模型 CRISP-DM是CrossIndustry Standard Process for Data Mining(跨行业数据挖掘标准流程)的字母缩写。CRISP-DM是由一家欧洲财团(时称SIG组织)在20世纪90年代中后期提出来的,是一套用于开放的数据挖掘项目的标准化方法,也是业内公认https://www.niaogebiji.com/article-30475-1.html
6.常见的数据挖掘方法有哪些帆软数字化转型知识库常见的数据挖掘方法包括分类、聚类、关联规则、回归分析、时间序列分析、神经网络、决策树、贝叶斯网络。这些方法在数据挖掘中各有千秋。分类用于将数据划分到预定义的类别中、聚类则是将数据点分组成自然簇、关联规则挖掘有助于发现数据之间的有趣关系、回归分析用于预测数值型数据、时间序列分析用于处理时间相关的数据、https://www.fanruan.com/blog/article/615481/
7.PART1数据挖掘概论—数据挖掘方法论知识发掘流程(Knowledge Discovery Process)包括属性选择(attribute selection)、数据清洗(data cleasing)、属性丰富(attribute enrichment)、数据编码(data coding)、数据挖掘(data mining)和报告(reporting)。 数据挖掘技术的产业标准 数据挖掘技术的产业标准主要包括CRISP-DM和SEMMA方法论。 http://www.mynw.cn/network/15793.html
8.数据挖掘及其在金融中的应用主要是采用人工智能相关方法作出预测,它能够实现统计回归预测和统计时间序列预测的功能,并且假设条件要比统计预测要宽松得多,甚至有些没有什么假设条件,精度上也与他们相当甚至比它们要好。 数据挖掘的类型,可能还不止这些,以上仅是一般的界定,正因为我们对数据挖掘的类型作出了界定,不同的类型也有对应的挖掘模型与算法https://www.jianshu.com/p/474504df2bdd
9.两种最为常用的数据挖掘方法论51CTO博客导读:本文介绍两种最为常用的数据挖掘方法论——CRISP-DM方法论和SEMMA方法论。 01 CRISP-DM方法论 CRISP-DM方法论由NCR、Clementine、OHRA和Daimler-Benz的数据挖掘项目总结而来,并被SPSS公司大力推广。CRISP-DM方法论将数据挖掘项目的生命周期分为6个阶段,分别是商业理解、数据理解、数据准备、建模、评估和准备工作,https://blog.51cto.com/u_13389043/6250220
10.如何运营才能更深刻理解和放大数据价值?数据挖掘的方法论包括数据预处理、特征选择、模型训练等多个环节。在每个环节中,我们都需要根据具体业务需求和数据特点,选择合适的算法和工具,以确保数据挖掘的效果。 2、数据挖掘的实战案例 在我的项目中,我们曾利用数据挖掘技术成功预测了用户购买意向,并据此制定了精准的营销策略,最终实现了销售额的大幅增长。这个案https://www.batmanit.cn/blog/k/53468.html
11.IBMSPSSStatistics操作进阶?严格设计支持下的统计方法论。 ?半试验研究支持下的统计方法论。 ?偏智能化、自动化分析的数据挖掘应用方法论。 IBM SPSS Statistics作为全球最为出色的统计软件之一,在功能上完全支持上述3种方法论体系,并满足绝大多数情况下的统计分析需求,Modeler则倾向于数据挖掘方法论的具体实现需求。由于对方法论的理解比对分析https://m.360docs.net/doc/info-ba014db4ac51f01dc281e53a580216fc700a5385.html
12.数据分析方法论是什么数据分析应该以业务场景为起始思考点,以业务决策作为终点: 1、明确思路(明确数据分析的目的以及思路是确保数据分析过程有效进行的首要条件。) 2、收集数据(收集数据是按照确定的数据分析框架收集相关数据的过程,它为数据分析提供了素材和依据。) 3、处理数据(处理数据是指对收集到的数据进行加工整理,形成适合数据分析的https://www.linkflowtech.com/news/175
13.人工智能产品规划方法论:CRISPDM解读也没有特定领域和行业的局限,是适用于所有行业的标准方法论,相对于其他的数据挖掘方法路,CRISP-DM具有灵活和适用范围广的优点。 需要特别注意的是:虽然这套数据挖掘流程的完整生命周期包含六个阶段,每一个阶段都依赖于上一个阶段的产出物,但是这六个阶段的顺序却并不是固定的——尤其是商业理解和数据理解,数据准备https://www.zhuanzhi.ai/document/67b162eb7e0faa087269ca871a612b4b
14.数据挖掘的几种经典方法论PurStar比较典型的是,对于同一个数据挖掘的问题类型,可以有多种方法选择使用。如果有多重技术要使用,那么在这一任务中,对于每一个要使用的技术要分别对待。一些建模方法对数据的形式有具体的要求,因此,在这一阶段,重新回到数据准备阶段执行某些任务有时是非常必要的。https://www.cnblogs.com/purstar/p/14171002.html
15.数据挖掘导论(2002.10.31)SAS数据挖掘目 录 SAS帮助你进行数据挖掘 SAS的数据挖掘的方法论-SEMMA SAS数据挖掘的集成软件工具--SAS/EM(Enterprise Miner) SAS帮助你进行数据挖掘 早期的计算机主要就是用来进行数据处理或称数值计算的。后来随着计算机技术及其周边设备和通讯能力的发展,计算机更多地用于了大量繁杂事务的在线处理,生产设备的实时控制https://doc.mbalib.com/view/e5fc8f144c6f793cd27b2e2c500c76c7.html
16.数据挖掘与数据化运营实战(豆瓣)《数据挖掘与数据化运营实战:思路、方法、技巧与应用》是目前有关数据挖掘在数据化运营实践领域比较全面和系统的著作,也是诸多数据挖掘书籍中为数不多的穿插大量真实的实践应用案例和场景的著作,更是创造性地针对数据化运营中不同分析挖掘课题类型,推出一一对应的分析思路集锦和相应的分析技巧集成,为读者提供“菜单化”https://book.douban.com/subject/24738300/
17.大数据介绍数据挖掘与分析精品课程通过本课程的教学,使学员充分了解和认识大数据的相关知识(大数据的应用范围及相关技术思想),同时学会用主流的数据挖掘软件完成数据挖掘建模任务,使学员掌握数据挖掘方法论CRISP-DM的本质。通过几个具体的、典型的数据挖掘案例,使学员在掌握这些案例所用的技巧的同时,充分理解数据挖掘的方法论,实现举一反三的效果,提高学员http://msup.cn/course/10047
18.领域知识数据挖掘9篇(全文)例如,在零售行业中,全球的零售“巨头”沃尔玛(Wal-Mart)通过使用数据挖掘的方法分析出啤酒与尿片之间有一定的数量关系,根据这一规律,它将两者绑在一起销售,结果使得销售额上涨了30%;在银行业中,汇丰银行采用数据挖掘技术将不断增长的客户群进行了详细的分类,从而找出最有潜力的客户类型,这时期销售费用减少了三分之https://www.99xueshu.com/w/ikeyylcoxu26.html
19.数据挖掘岗位职责1、硕士以上学历,有较强的数学功底和扎实的统计学、数据挖掘功底; 2、掌握SQL语句,熟悉Oracle,具备数据处理能力; 3、精通常用数据挖掘工具软件R / SPSS Clementine / SAS/Python等工具之一,掌握聚类分析、方差分析、相关分析、回归分析、关联规则、决策树、随机模型等常用数据分析方法以及经典的.数据挖掘算法,具备一定https://www.yjbys.com/hr/gangwei/4044256.html
20.清华大学出版社图书详情本书是一本全面介绍数据挖掘基本原理、核心算法以及典型应用方法的专业书籍。第4版在前三版的基础上,对数据挖掘的方法论和知识点进行了重新归纳,按照基础篇、提高篇和应用篇进行设计。从方法论上说,数据挖掘是一个方法和原理逐步演变的过程。首先,最基础的数据挖掘方法主要有“关联规则”“分类”“聚类”,它们是数据http://www.tup.tsinghua.edu.cn/booksCenter/book_09781801.html
21.数据挖掘技术与虚假财务报表的识别研究3.1数据挖掘技术在识别虚假财务报表中的可行性数据挖掘是一些功能强大的数据分析技术的集合,这些技术用于帮助我们分析极其巨大的数据集。经过正确地应用,数据挖掘可以揭示出埋藏在企业数据库中的隐藏关系和信息。在会计领域利用数据挖掘技术识别虚假财务报告的研究目的是确定数据挖掘的方法论,建立相应的规则和算法。具体而言,https://m.renrendoc.com/paper/171390471.html
22.高效实施数据挖掘的方法和步骤yuanye1014有了优秀方法论的指导,还需要一个高效的数据挖掘工具。目前提供数据挖掘产品的厂商非常多,如著名的产品有SAS Enterprise Miner、SPSS Clementine 8.1(简体中文版)、IBM DB2 Intelligent Mine等,这些产品各有特色。 选择一款适合的数据挖掘工具,主要从以下几方面来考虑。下面我们根据CRISP-DM方法论,从数据挖掘项目的各个阶http://blog.chinaunix.net/uid-64814-id-2690182.html
23.spss估计样本量,简体中文帮助 结果文件阅读器 ODBC数据驱动包 R/Python语言插件 用户手册 系统补丁 1.5spss的帮助系统 学习向导 统计辅导 个案研究 帮助菜单 针对高级用户的帮助功能 指令语法参考 算法 spss社区 1.6数据分析方法论概述 严格设计支持下的统计方法论 半试验研究支持下的统计方法论 偏智能化、自动化分析的数据挖掘应用方法http://www.cnjit.net/spss/25908.html