论文:大数据的若干基础研究方向网经社电子商务研究中心电商门户互联网+智库

●不冲突是指大数据不取代信息化,信息化不包含大数据。这样,信息化工作照样做,并且信息化仍然将快速发展。但大数据已经从信息化工作中独立出来,如果说信息化对应的技术叫信息技术(informationtechnology,IT),那么大数据对应的技术可以叫数据技术(datatechnology,DT)。

信息化的技术和大数据的技术是不同的,参考文献[1]给出了二者技术的对比。这样,信息化的基础研究和大数据的基础研究也是不一样的。大数据的基础包括:应用基础、分析基础、数据基础、计算基础和数学基础5个方面。

大数据的应用基础包括各学科、各领域的基于数据的新方法、新范式、新理论等,用于支撑基于大数据的科学研究方法、社会发展方式、经济建设模式和国防安全手段。大数据的应用基础是建立在大数据技术、产品、工具和解决方案之上的,而这些产品和工具的开发需要大数据的分析基础。大数据的分析基础包括大数据分析理论与框架、大数据分析方法和算法、业务驱动的分析理论和方法等,大数据分析方法和算法的实现和实施需要大数据的数据基础、计算基础和数学基础。大数据的数据基础包括大数据的治理和管理、存储理论和模型、可视化等;大数据的计算基础包括多地计算/异地计算、计算框架、硬件设备、网络设备等;大数据的数学基础包括数据的数学结构、数据代数、数据相似性等。图1给出了大数据基础的逻辑关系。

图1大数据基础逻辑关系

自2012年起,国家自然科学基金委员会对大数据研究开始立项,总体资助情况分布如图2所示。

图22012—2016年国家自然科学基金资助的以“大数据”为主题词的项目数

图32012—2016年国家自然科学基金委员会各学部资助项目数分布

图42012—2016年在五大基础方面的项目数总占比

图52012—2016年在五大基础方面的项目数年度占比

从图5可以看出,在2012年大数据发展初期,计算框架和计算能力是推动大数据发展最急需的基础,而之后随着开源计算框架的出现,计算基础的比例又开始下降。然而,2016年,数据开放共享成为趋势和重点,数据迁移、异地交换的需求又促进研究者探索新的计算框架。并且,分析基础在2013年的突增也说明当时对大数据方法需求的增长,随后相对稳定。在计算基础下降的过程中,应用基础占比逐渐上升,这说明越来越多的领域参与到大数据的研究中来。

图62012—2016年在五大基础方面的项目数年度变化情况

3大数据的应用基础

大数据的应用渗透到越来越多的领域,各领域大数据理论和方法的研究将为创新大数据应用、提升大数据价值奠定基础,创造出基于大数据的新型科学研究、管理决策、社会发展、经济建设方法和模式等。大数据的应用基础主要表现在各个学科基于大数据的创新,以科学研究的第四范式为代表[3],包括对人文社会科学的研究、管理决策新方法、外部事件驱动的管理决策方法、基于微观数据的宏观经济学等。

GRAYJ指出[3]:几千年前,科学研究是用实验解释自然现象的;几百年前,科学研究用理论模型探索科学规律,用实验验证理论;几十年前,科学研究用计算机模拟复杂现象,探索其中的奥秘;现在,科学研究是基于对数据的探索。科学的目的是认识宇宙、认识物质、认识生命、认识社会。

●在认识宇宙方面:人们用了很多方法,早期科学家用肉眼观测天空,后来用望远镜,现在用射电望远镜。这些望远镜得到的结果是各种各样的宇宙图像,天文学家通过分析这些图像来研究宇宙。

●在认识生命方面:自从DNA被发现,人类对生命的认识进入了全新的阶段,人类似乎找到生命的本质、遗传的本质。DNA可以用A(腺嘌呤)、C(胞嘧啶)、G(鸟嘌呤)、T(胸腺嘧啶)4个字母的字符串表示,于是DNA变成了可以用计算机计算的数据,生命科学研究就出现计算生物学的分支,并且迅速发展。生命科学家开始分析数据,或者通过分析数据来研究生命。

从上述分析可知,不论是自然科学还是社会科学,先进的研究方法是在数据上开展研究,这也说明,认识数据先于认识宇宙、认识物质、认识生命和认识社会。

大数据应用基础的主要研究方向如下。

●各学科基于大数据的新方法、新范式、新理论等,包括生命科学、物理、化学、天文、历史、社会、管理、经济等学科的大数据方法和模型研究与探索。

●各领域基于数据的新方法、新范式、新理论等,包括医疗、金融、交通、环保、商业等领域的大数据创新模式、智能决策方法和模型研究与探索。

●用于支撑基于大数据的科学研究方法、社会发展方式、经济建设模式和国防安全手段。

国家自然科学基金委员会也已对上述各个研究方向开展资助,例如在生命科学的大数据方法研究项目有:“利用大数据信息挖掘和基因进化方法研究禽流感病毒的跨地域传播”“基于大数据整合挖掘的肾细胞癌分子进化机制研究”等;商业、交通、环保等领域的大数据方法研究项目有:“大数据背景下的商业模式创新机制研究”“大数据驱动的产品精确设计理论、方法及其应用研究”“大数据环境下的复杂城市交通系统预测与控制”“数据驱动的我国PM2.5污染规律模型智能构建方法研究”“大数据驱动的我国典型重点流域水污染防控决策研究”以及“数据驱动的军事复杂系统风险决策分析方法及其应用研究”“面向军事情报的多媒体大数据分析与展示”等项目。

4大数据的分析基础

开发数据的核心是数据分析,也就是说大数据技术的核心是数据分析技术。目前,大数据分析技术主要在传统方法上延伸拓展,还没有从本质上解决大数据利用面临的挑战。这需要探索大数据分析技术的共性问题,主要研究方向如下。

(1)传统数据分析算法的改进原理

现有的大数据分析理论与方法大多从传统的统计分析、数据挖掘、机器学习、数据融合等领域派生出来,例如K-means++[5]、K-meansⅡ[6]等聚类算法对经典K-means算法进行了改进,实现了大规模数据高效聚类。大数据的特点使现有方法超出了其使用条件和范围。因此,如何在拓展原有方法的基础上,研究适用于大数据特征的数据分析方法成为大数据时代的挑战,包括研究扩展传统的数据挖掘、机器学习、数据融合算法的原理。

(2)新型数据挖掘算法

大数据挖掘是从大数据中寻找其规律的技术[7]。大数据具有高价值、低密度的特性,“寻找”变得更具挑战性。分类分析需要有标签的训练集指导建模,但是大数据集中大多是没有经过专家打好标签的数据,需探索新的分类方法,以利用较少的有标签样本和较多的无标签样本进行学习。此外,面向高价值低密度的大数据集,存在这样一类数据挖掘需求:发现给定大数据集里面少数相似的数据对象组成的、表现出相异于大多数数据对象而形成异常的群组,被称为特异群组挖掘[8-10]新的大数据挖掘方法研究包括特异群组挖掘方法、面向海量数据查询的相似性计算方法、大规模带时序可信知识图谱自动构建方法、动态大图分析方法等。

(3)高维数据分析方法

通过对大数据本身的压缩来适应有限存储和计算资源,除了研发计算能力更强、存储量更大的计算机之外,维规约技术(包括选维、降维、维度子空间等)是一类有效的方法,但也具备技术挑战。需要面向不同类型的数据研究语义保持下的大数据维规约技术(包括特征分析、特征选择、降维、子空间等),形成新的高维大数据分析方法和理论。

(4)深度学习方法

国家自然科学基金委员会在大数据分析基础方面资助的项目有:“大数据机器学习分布式算法的可行性理论”“基于知识指导和模糊信息粒化的时序大数据分析和挖掘”“RADIUSK-means算法及其拓展问题的研究”“基于多源异构不确定数据的高效用信息挖掘的研究”“面向图像序列的深度学习理论与方法”“面向大数据的快速关联分析关键技术研究”“面向大数据分析的自学习网络关键技术研究”“基于认知计算的大数据挖掘理论与技术”项目等。

5大数据的数据基础

(1)大数据治理

确保数据稀缺性不丧失和隐私不泄露是推动和实现数据开放共享的关键,有必要探索数据隐私保护机制及模型、大数据权属认定与保障理论及体系、区块链技术,构建数据自治开放理论体系,推动大数据交易。

(2)外部数据的质量保障机制

(3)大数据建模

关系模型、面向对象模型在以前的数据管理技术中发挥了核心作用。但原有的数学模型多是针对一种类型的数据,而大数据中包含结构化数据、半结构化数据和非结构化数据,因此需要研究相应的建模方法,将不同类型的数据从语义上关联在一起,以复杂关联网络等技术为基础研究连接各种不同类型数据的数据描述机制,支撑对大数据的管理。

(4)大数据索引

传统索引结构常用于结构化数据库系统,能够提高小规模数据检索速度和查询表连接效率。然而,大数据环境下,传统索引结构存在冗余、存储空间过大、更新困难以及不适用于分布式存储环境等缺陷,这需要针对大数据的存储与数据特性研究大数据索引,包括非结构化数据索引结构、基于分布式存储的数据索引结构、高维与多目标需求下的数据索引结构等多种索引模型和索引性能评估模型。

(5)大数据可视化机理和方法

(6)知识图谱

知识图谱用于刻画实体或概念及其之间的关系,在大数据环境下,知识图谱更新和复杂性都急剧增加,为构建高质量知识图谱和实现有效推理,需要研究复杂知识图谱的语义描述方法、不确定知识图谱的构建与管理、基于知识图谱的多种类型数据表示模型、跨结构数据的存取机制和语义表示等。

国家自然科学基金委员会对数据基础研究方向的资助项目有:“大数据协同计算及查询服务的隐私保护”“大数据环境下的首席数据官、数据治理及组织绩效关系研究”“高质量大数据集成关键技术的研究”“大数据一致性错误管理理论与关键技术”“大数据集背景下概念格的多粒度构造和存储研究”“分布式不确定数据查询处理关键技术研究”“面向大数据的信息可视化设计方法研究”“高维大数据可视化的散度模型、算法及评价”“基于外存的海量知识图谱数据的查询处理”等。

6大数据的计算基础

(1)新型高效能系统结构

当前,计算机系统的计算部件、存储部件、通信部件的功能和性能已朝着高速、高容量、高带宽的方向发展,并具有可编程、可定制等特点。如何利用这些部件构建新型高效能计算机系统满足大数据处理需求,是一个迫切需要解决的问题。这需要探索可重构、高度可配置的新型高效能系统结构;研究计算、存储和通信部件的有机结合、按需配置、弹性伸缩的方法;研究可变结构、软硬件结合的拟态计算机系统结构;研究高效能分布式存储系统的构建原理。

(2)性能导向的大数据计算框架

大数据的规模、计算时效性以及异构数据分布存储的特征,对计算机系统的高通量、高时效和高并行提出了挑战。性能导向的并行计算框架是应对大数据挑战的关键和基础。这需要研究分析大数据应用的计算特征、通信特征和存储特征;研究并行计算系统的高通量、高时效计算技术,包括实时分布式内存系统、内存计算系统、异构多核平台的性能加速技术等;研究性能可预测的并行计算模型。

(3)多地计算/异地计算理论与方法

数据大的难以移动、数据重要的不愿移动,在此背景下,如何求解一个全局问题是一大挑战。通常在大数据所属地计算局部解,即大数据应用具有数据存储的分布性问题,在数据所在地进行计算,产生的部分计算结果可能出现不一致、相互背离等现象,需要通过不同方式的计算进行验证,这给求解全局问题带来挑战。因此,需要研究大数据多地计算/异地计算基础问题,包括异地计算行为建模;研究局部解的局限性评估机制、局部解发送接收的身份验证机制、局部解的优化融合策略;研究全局解的最优性评估机制、提高全局解最优率的异地选取策略等。

7大数据的数学基础

(1)大数据的代数系统

关系代数为关系型计算提供理论依据。然而,高扩展性是大数据分析的重要需求,传统的关系数据模型难以胜任当前存在的非结构化数据(如文本数据、序列数据、流式数据等)的处理。近年来,已出现一些非关系型数据库(如HBase、MongoDB等),在非结构化数据上的复杂数据分析能力有所提高,并得到广泛应用。但是,目前缺少对非关系型数据库的数据代数的研究。对于非关系型数据,定义由数据集构成的集合上的度量方法和运算,形成一定论域上的数据代数等,这些都将在数学基础上对非关系型数据提供理论支持,有望突破现有技术瓶颈。

(2)大数据内在数学结构

数据有复杂的拓扑、网络等不同结构,在大数据问题中,数据本身往往具有更为复杂的内在数学结构,例如,高维数据空间中因为具有一定的约束条件而具有流形的数据结构;又如,在图像等非结构化数据中,先天性地具有低秩的数学性质。在深刻理解和挖掘内在相应结构的基础上,才能有效建立分析模型。针对大数据集的流形或复形等复杂数学结构和稀疏、低秩等数学性质,设计合理描述的数据结构,构建相应的度量,选取多尺度自适应的基底表示,为构建分析模型、形成反映内在结构参数的分析算法提供理论支撑,并通过数学结构的性质,保证算法的适用性。

(3)大数据的相似性度量

相似性是数据挖掘分析任务的核心。简单数据类型的相似性度量支撑传统数据分析模型,然而,针对复杂数据类型,这些相似性度量难以真实反映数据之间的关系。针对大数据复杂性特征,定义空间非刚性结构的相似性度量和超高维、多类型的大数据相似性度量,发展非线性降维方法、核理论以及相应的高效算法和稳定性分析。

8结束语

参考文献:

[1]朱扬勇,熊贇.大数据是数据、技术,还是应用[J].大数据,2015007

ZHUYY,XIONGY.Definingbigdata[J].BigDataResearch,2015007.BigDataResearch,2015007.

[2]MOOREGE.Themicroprocessor:engineofthetechnologyrevolution[J].CommunicationsoftheACM,1997,40(2):112.

[3]HEYT,STEWARTT,KRISTINT.Theforthparadigm:data-intensivescientificdiscovery[M].Beijing:MicrosoftResearchPress,2009.

[4]CARMID,FALKOWSKIA,KUFLIKE,etal.Higgsafterthediscovery:astatusreport[J].JournalofHighEnergyPhysics,2012,arXiv:1207.1718.

[5]BAHMANIB,MOSELEYB,VATTANIA,etal.Scalablek-means++[J].ProceedingsoftheVLDBEndowment,2012,5(7):622-633.

[6]ARTHURD,VASSILVITSKIIS.K-means++:theadvantagesofcarefulseeding[C]//18thACM-SIAMSymposiumonDiscreteAlgorithms,January7-9,2007,NewOrleans,Louisiana,USA.NewYork:ACMPress,2007:1027-1035.

XIONGY,ZHUYY,CHENZY.Bigdatamining[M].Shanghai:ShanghaiScientific&TechnicalPublishersPress,2016.

[8]熊贇,朱扬勇.特异群组挖掘:框架与应用[J].大数据,2015020.

XIONGY,ZHUYY.Abnormalgroupmining:frameworkandapplications[J].BigDataResearch,2015020.

[9]XIONGY,ZHUYY,YUPS,etal.Towardscohesiveanomalymining[C]//27thAAAIConferenceonArtificialIntelligence(AAAI),July14-18,2013,Bellevue,Washington,USA.SanFrancisco:AAAIPress,2013:984-990.

[10]XIONGY,ZHUYY.Miningpeculiaritygroupsinday-by-daybehavioraldatasets[C]//IEEEInternationalConferenceonDataMining(ICDM),December6-9,2009,Miami,Florida,USA.NewJersey:IEEEPress,2009:578-587.

[11]HINTONGE,SALAKHUDINOVRR.Reducingthedimensionalityofdatawithneuralnetworks[J].Science,2006,313(5786):504-507.

THE END
1.大数据挖掘的步骤是怎样的呢?大数据挖掘流程大数据挖掘是一个复杂而系统的过程,它利用计算机科学的方法和技术,对大量、多样化、高速增长的数据进行深入挖掘,以发现有价值的信息和知识。以下是大数据挖掘的主要步骤和方法: 一、大数据挖掘的步骤 数据收集: 从各种数据源中采集数据,包括结构化数据(如数据库中的表格)、半结构化数据(如XML、JSON等格式的数据)和非https://blog.csdn.net/weixin_54503231/article/details/141565108
2.什么是大数据挖掘方法帆软数字化转型知识库大数据挖掘方法是指通过使用各种技术和工具,从庞大的数据集中提取有价值的模式、知识和洞察的过程。大数据挖掘方法包括:数据预处理、数据清洗、数据集成、数据变换、数据挖掘、模式评估、知识表示。其中,数据预处理是大数据挖掘过程中至关重要的一步,涉及对原始数据进行清洗、转换和准备,以确保其质量和一致性。数据预处理https://www.fanruan.com/blog/article/602183/
3.数据挖掘论文精选5篇论文3.2 大数据挖掘方法 大数据时代缺的不是数据, 而是方法。大数据在旅游行业的应用前景非常广阔, 但是面对大量的数据, 不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用, 那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据, 通过云计算技术, 对数据的收集、存储都较为容易, 但对数据的https://www.ruiwen.com/lunwen/1801458.html
4.《大数据挖掘:系统方法与实例分析》(周英卓金武卞月青)简介MATLAB官方(MathWorks)资深大数据挖掘专家撰写,MathWorks官方及多位专家鼎力推荐。从技术、方法、案例、*实践4个维度循序渐进地讲解了大数据挖掘技的流程、方法和原理。 作者:周英 卓金武 卞月青出版社:机械工业出版社出版时间:2016年05月 手机专享价 ¥ 当当价 降价通知 ¥57.00 定价 ¥79.00 配送http://product.dangdang.com/23955674.html
5.北京大学—化柏林:大数据分析与挖掘技术主讲人介绍:化柏林,博士,北京大学信息管理系助理教授、研究员、硕士生导师。主要从事大数据情报分析与知识抽取研究。主持国家自然科学基金项目、国家社科基金等课题5项,出版著作2部,发表论文50余篇。 (通讯员 李玉媛)2018年11月23日15:30,我院邀请北京大学化柏林教授来我院918会议室开展题为《大数据分析与挖掘方法》https://sim.ccnu.edu.cn/info/1047/6862.htm
6.大数据金融第二章大数据相关技术数据挖掘的任务:关联分析、聚类分析、分类、回归、预测、序列和偏差分析。 五 数据解释 数据解释是一个面向用户的过程,它是指将大数据挖掘及分析结果在显示终端以友好、形象、易于理解的形式呈现给用户。 (一) 数据可视化 数据可视化技术主要是通过图形化方法进行清晰、有效的数据传递。 https://www.jianshu.com/p/d68251554c66
7.大数据的数据挖掘方案有哪些?大数据的数据挖掘方案有:1、神经网络方法;2、遗传算法;3、决策树方法;4、粗糙集方法;5、覆盖正例排斥反例方法;6、统计分析方法;7、模糊集方法。关于数据挖掘,你必须知道的几个主要方法数据挖掘是一门交叉性的新兴学科,它将数据可视化、数据库技术、高性能计算机、统计学、机器学习、模式识别、人工智能等多个范畴的https://www.linkflowtech.com/news/1986
8.什么是工业大数据常用的五种大数据分析方法星云联动大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法才能深入数据内部,挖掘出公认的价值。 语义引擎 我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,https://www.istarscloud.com/electricity/3403.html
9.数据挖掘技术方法(精选十篇)大数据是下一个社会阶段的金矿和石油[3]。这对于审计人员既是挑战又是机遇。作为审计的核心方法———数据分析,能否有效地从各种超大规模的数据集中提取、挖掘有价值的信息,这将直接关乎审计效率。 1.3.2 全数据模式可以增加审计数据分析工作的精准性 在传统审计工作中,由于数据的繁杂,一般采用数据抽样分析。而大数据https://www.360wenmi.com/f/cnkeyg31vygx.html
10.数据挖掘与分析的六种经典方法论最近梳理了一下数据挖掘与分析的常用方法论,这里简要介绍6种模型。 1、CRISP-DM 模型 CRISP-DM是CrossIndustry Standard Process for Data Mining(跨行业数据挖掘标准流程)的字母缩写。CRISP-DM是由一家欧洲财团(时称SIG组织)在20世纪90年代中后期提出来的,是一套用于开放的数据挖掘项目的标准化方法,也是业内公认https://www.niaogebiji.com/article-30475-1.html
11.空间数据挖掘常用的17种方法腾讯云开发者社区PPV课大数据学习社区如果你对大数据感兴趣;如果你想转行做大数据;如果你想了解大数据是怎么改变我们生活,请点标题下蓝字关注PPV课大数据 问题1:空间数据挖掘有哪些常用方法,举例说明一种方法的原理及应用. 答:空间数据挖掘的常用方法有:统计法,聚类方法,关联规则发掘方法,Rough集方法,神经网络方法,云理论,证据理论,模糊https://cloud.tencent.com/developer/article/1101337
12.华为认证大数据方向(HCIE通过HCIE-Big Data认证,将证明您系统理解并掌握大型并行处理数据仓库平台的架构原理、分布式关系型数据库的设计和优化及应用开发;掌握大数据挖掘的基本原理,常用算法、常用挖掘方法、对华为大数据挖掘解决方案FusionInsight Miner和华为云机器学习服务MLS的熟练使用,胜任数据仓库开发、大数据分析、大数据数据挖掘和人工智能的相关http://m.edufly.cn/huawei/hcie/549.html
13.胡焕庸线存在性的大数据分析——中国人口分布特征的生态学及新由此可见, 这个数据体系由于其数据量和和数据源的多样性, 构成了一个大数据集合, 构成使用大数据挖掘方法分析的科学基础。由于缺少我国台湾地区的数据,所以在图中采用虚线表示我国台湾地区的疆域。 1.2 胡焕庸线的计算 根据胡焕庸线的表述, 胡焕庸线是从爱辉(今黑龙江黑河)到云南腾冲的一条直线, 在图1中绘制了https://www.ecologica.cn/stxb/ch/html/2019/14/stxb201812212776.htm