常用的数据挖掘方法陌儿

1、预测性和描述性的主要区别在于是否有目标变量

2、预测性包括分类和回归:

(1)分类:输出变量为离散型,常见的算法包括(朴素)贝叶斯、决策树、逻辑回归、KNN、SVM、神经网络、随机森林。

(2)回归:输出变量为连续型。

3、描述性包括聚类和关联:

(1)聚类:实现对样本的细分,使得同组内的样本特征较为相似,不同组的样本特征差异较大。例如零售客户细分。

(2)关联::指的是我们想发现数据的各部分之间的联系和规则。常指购物篮分析,即消费者常常会同时购买哪些产品,从而有助于商家的捆绑销售。

4、建立分类模型的一般方法:

二、朴素贝叶斯

1、贝叶斯定理:

2、原理:对于给出的待分类项(即特征属性的集合),求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。

3、朴素贝叶斯分类流程

三、决策树

1、原理,相当于找对象

2、决策树定义:

决策树(DecisionTree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

3、决策树构造:

其中属性选择度量的算法很多,一般使用自顶向下递归分治法,并采用不回溯的贪心策略。ID3和C4.5是两种常用算法。

4、ID3算法:

信息增益是特征选择中的一个重要指标,它定义为一个特征能够为分类系统带来多少信息,带来的信息越多,该特征越重要。

基本信息包括:熵,期望信息和信息增益。

(1)熵:设D为用类别对训练元组进行的划分,则D的熵表示为:

其中i表示第i个类别在整个训练元组中出现的概率,可以用属于此类别元素的数量除以训练元组元素总数量作为估计。熵的实际意义表示是D中元组的类标号所需要的平均信息量。

(2)期望信息:

现在我们假设将训练元组D按属性A进行划分,则A对D划分的期望信息为:

(3)信息增益:

(4)待补充案例:SNS社区中不真实账号检测的例子如中使用ID3算法构造决策树。

5、C4.5算法:

(1)ID3算法存在的问题:偏向于多值属性,例如,如果存在唯一标识属性ID,则ID3会选择它作为分裂属性,这样虽然使得划分充分纯净,但这种划分对分类几乎毫无用处。(例如会选择主键)

(2)原理:C4.5算法是基于ID3算法进行改进后的一种重要算法,使用信息增益率来选择属性。

THE END
1.数据挖掘机器之心1993年Quinlan提出的C4.5,是数据挖掘中最简单常用的决策树算法之一。其他的决策树算法还有CART,由Breiman于1984年提出,它是一种基于树的分类和预测方法,模型使用简单,易于理解(规则解释起来更简明易)。 类似的还有K-means算法,它最初在1955年由Steinhaus提出,在众多不同的科学邻域被发现。时至今日,K-means仍然是最https://www.jiqizhixin.com/graph/technologies/7904de1e-5ab5-4f0a-aa60-693cb2978766
2.数据挖掘的四种基本方法数据挖掘的四种基本方法 东奥美国注册管理会计师 2024-12-06 14:51:12 遗传算法 遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。https://www.dongao.com/cma/zy/202406204447292.html
3.常见的数据挖掘方法有哪些帆软数字化转型知识库常见的数据挖掘方法包括分类、聚类、关联规则、回归分析、时间序列分析、神经网络、决策树、贝叶斯网络。这些方法在数据挖掘中各有千秋。分类用于将数据划分到预定义的类别中、聚类则是将数据点分组成自然簇、关联规则挖掘有助于发现数据之间的有趣关系、回归分析用于预测数值型数据、时间序列分析用于处理时间相关的数据、https://www.fanruan.com/blog/article/615481/
4.数据挖掘的常用方法都有哪些?在数据分析中,数据挖掘工作是一个十分重要的工作,可以说,数据挖掘工作占据数据分析工作的时间将近一半,由此可见数据挖掘的重要性,要想做好数据挖掘工作需要掌握一些方法,那么数据挖掘的常用方法都有哪些呢?下面就由小编为大家解答一下这个问题。 首先给大家说一下神经网络方法。神经网络是模拟人类的形象直觉思维,在生物http://api.cda.cn/view/26507.html
5.下面()不是数据挖掘的常用方法。A.关联规则挖掘B.分类分析C下面( )不是数据挖掘的常用方法。 A.关联规则挖掘B.分类分析C.聚类分析D.结构化开发热门考试 高考 一级建造师 二级建造师 初级经济师 中级经济师 教师资格证 企业法律顾问 注册会计师CPA 中级会计师 考研 百度题库 百度题库旨在为考生提供高效的智能备考服务,全面覆盖中小学财会类、建筑工程、职业https://tiku.baidu.com/web/singledetail/a333e9d8d15abe23482f4db6?tosite=wenkutiku1
6.两种最为常用的数据挖掘方法论51CTO博客导读:本文介绍两种最为常用的数据挖掘方法论——CRISP-DM方法论和SEMMA方法论。 01 CRISP-DM方法论 CRISP-DM方法论由NCR、Clementine、OHRA和Daimler-Benz的数据挖掘项目总结而来,并被SPSS公司大力推广。CRISP-DM方法论将数据挖掘项目的生命周期分为6个阶段,分别是商业理解、数据理解、数据准备、建模、评估和准备工作,https://blog.51cto.com/u_13389043/6250220
7.数据挖掘中常用的数据清洗方法数据的合法性,比如数据与常识不符,市区内开车速度到达了400km/h 数据的一致性,比如不同来源的不同指标,实际的内涵与表示意义是一样的 数据清洗的结果是对各种脏数据进行对应标准的干净的、连续的数据,提供给数据统计、数据挖掘等使用。 1、数据完整性问题 https://www.jianshu.com/p/c2b15fcf7100
8.数据挖掘常用分析方法与算法研究.pdf臂浇兆踞玖勉晌揣捆彰宫甸捻厂去荡数据挖掘常用分析方法与算法研究椽啪础谩吊瘩硫飞啪屈次孽谜犀媒尘芳扔针制气估盎捷赊募卤驰禽颜该娘须十很苗静辣贡映府灭详眩俘纸制反榔亩沙俊堕栈西厩屋建余玻哲只瞬消俺勿蔬脾挝恕抑购扔凭搏兼轿箕公键作蛔兑惟部计抓纺苦石赏郁尧谋恐无躲斌贿穿咸规削图https://max.book118.com/html/2017/0629/118893352.shtm
9.数据挖掘之七种常用的方法经管文库(原现金交易docx 203.39 KB0个论坛币 GDP和人均GDP平减说明.xls 27 KB0个论坛币 关键词:数据挖掘 https://bbs.pinggu.org/thread-13312809-1-1.html
10.常用的数据分析方法论有哪些数据分析就是将收集到的数据通过加工、整理和分析的过程,使其转化为信息,通常来说,数据分析常用的方法有PEST分析法;5W2H分析法;逻辑树分析法;描述统计法;方差分析法;时间序列分析法。 1、PEST分析法 PEST分析是战略咨询顾问用来帮助企业检阅其外部宏观环境的一种方法。是指宏观环境的分析 https://36kr.com/p/1485598311399560
11.数据挖掘与分析的六种经典方法论最近梳理了一下数据挖掘与分析的常用方法论,这里简要介绍6种模型。 1、CRISP-DM 模型 CRISP-DM是CrossIndustry Standard Process for Data Mining(跨行业数据挖掘标准流程)的字母缩写。CRISP-DM是由一家欧洲财团(时称SIG组织)在20世纪90年代中后期提出来的,是一套用于开放的数据挖掘项目的标准化方法,也是业内公认https://www.niaogebiji.com/article-30475-1.html
12.知识学习笔记异常检测概述集成是提高数据挖掘算法精度的常用方法。集成方法将多个算法或多个基检测器的输出结合起来。其基本思想是一些算法在某些子集上表现很好,一些算法在其他子集上表现很好,然后集成起来使得输出更加鲁棒。集成方法与基于子空间方法有着天然的相似性,子空间与不同的点集相关,而集成方法使用基检测器来探索不同维度的子集,将这些https://maimai.cn/article/detail?fid=1681725773&efid=LlA7mSgbubGa3CMUFD6t0w
13.摩托车半热熔胎使用时需要注意哪些事项?适用于高速行驶的场合本文利用网络爬虫技术,从互联网上收集了大量的与摩托车半热熔轮胎相关的数据,数据包括半热熔轮胎的品牌、型号、价格、性能参数等方面的信息,在收集数据的过程中,需要注意数据的准确性和完整性,并对数据进行清洗和预处理。 关联规则是数据挖掘中的一种常用方法,用于发现数据之间的关联性和规律性,关联规则挖掘可以帮助我https://www.dongchedi.com/article/7233349793031045647
14.Web日志挖掘中一种改进的会话识别方法AET本文主要研究数据预处理阶段的会话识别。在分析现有的会话识别方法基础上,提出一种基于访问站点首页和导航页的改进会话识别方法,最后通过实验验证了改进的会话识别方法比现有方法更有效。 1 数据预处理 数据预处理是Web日志中最基础、最频繁的工作,是整个数据准备的核心工作。数据预处理的结果将直接影响到挖掘算法产生的http://www.chinaaet.com/article/76480