数据挖掘:基本概念理解何永灿

数据挖掘:从大量数据中挖掘有趣模式和知识的过程。

1、数据清理:消除噪声和删除不一致数据;

2、数据集成:多种数据源组合在一起。

4、数据变换:通过汇总或聚集操作,把数据变换和统一成适合挖掘的形式。

基本步骤、使用智能方法提取数据模式

根据某些兴趣度度量,识别代表知识的真正有趣的模式。

使用可视化和知识表示技术,向用户提供挖掘的知识。

#关系型数据库是数据挖掘最常见、最丰富的信息源,是数据挖掘研究的一种主要数据形式。

数据仓库:一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。

#特点:

1、数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构成。

2、通常,数据仓库称作数据立方体(datacube)的多维数据结构建模。其中每个维对应于模式中的一个或一组属性,而每个单元存放某种聚集度量值,如count或sum。

(数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据)

1、数据数据库的每一个记录代表一个事务。

2、通常一个事务包含一个唯一的事务标识号(trans_ID),以及一个组成事务的项的列表。

3、事务可以存放在表中,每个事务一个记录。

#数据挖掘功能用于指定数据挖掘任务发现的模式。(模式,根据不同的挖掘任务,所使用的不同的挖掘方法)

#数据挖掘任务任务可以分为两类:

1、描述性(descriptive):刻画目标数据中数据的一般性质;

2、预测性(predictive):在当前数据上进行归纳,一遍做出预测;

#描述数据的方法:

1、数据特征化

#数据特征化:目标数据的一般特性或特征的汇总。

#数据特征化的结果:饼图、条图、线图、多维数据立方体、包含交叉表在内的多维表。(也可以用广义关系或者规则(称特征规则)形式提供)

#例,挖掘任务:汇总一年之内在淘宝花费2万元以上的顾客特征。

#客户数据信息特征化的结果可以是顾客的概况:年龄在30~45岁、有工作、有很好的信用等级。

#数据挖掘应对允许用户在任意维下钻,一遍根据这些维度观察用户。

2、数据区分

#数据区分:将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。

#数据区分的结果:类似特征描述,但区分描述应当包括比较度量,以便帮助区别目标类和对比类。

#例,挖掘任务:比较两组顾客——定期购买手机的顾客和不经常购买这种产品的顾客。

#结果描述:提供这些顾客比较的概况

1、频繁模式:在数据中频繁出现的模式。

频繁项集:频繁的在事务数据集中一起出现的商品的集合;(如,超市中被许多顾客频繁地一起购买的牛奶和面包)

频繁子序列(又称序列模式):如,淘宝上顾客倾向于先购买手机,再购买保护套,然后再购买手机保护膜,这样一个模式就是一个(频繁)序列模式。

频繁子结构:涉及不同的数据结构形式(如,图、树、格),可以与项集或子序列结合在一起。(如果一个子结构频繁地出现,则称它为(频繁)结构模式)

#例,挖掘任务——哪些商品经常被一起购买。

结果1:buys(X,"computer")=>buys(X,"software")[support=1%,confidence=50%]

a、X是变量,代表顾客;

b、confidence:置信度或确信度,50%表示如果一味顾客买了电脑,则其会购买软件的可能性是50%;

c、support:支持度,1%意味着,所分析的所有事务的1%显示电脑和软件一起被购买;

结果2:简化为"computer=>software[1%,50%]"

#通常,一个关联规则被认为是无趣的而被丢弃;也就是,该规则不能同时满足“最小支持度阈值”和“最小置信度阈值”。

#频繁项集挖掘是频繁模式挖掘的基础。

#不同与分类和回归分析标记类的数据集,聚类(clustering)是分析数据对象(也就是样本),而不考虑类标号。

#许多情况下,样本数据并不存在标记,可以使用聚类产生数据组群的类标号。

#对象根据最大化类内相似性、最小化类间相似性的原则进行聚类或分组。也就是说,对象(一类样本)的簇(cluster,一类样本共同的特征)这样形成,使得相比之下在同一簇中的对象(样本)具有很高的相似性,而与其它簇中的对象很不相似。

#聚类分析所形成的每一个簇(也就是一种分类)都可以看做一个对象类,由它可以导出规则(符号此规则的样本就可以归为该簇(或该类))。

#聚类便于分类法的形成,将观测组织成类分层结构,把类似的事件组织在一起。

#离群点:数据集中,与其它样本的一般行为或模型不一致的样本。

#离群点数据分析也称作“离群点分析”或“异常挖掘”。

#有趣的模式代表知识,其特点:

1、易于被人理解;(也可以理解该挖掘方法的可解释性)

2、在某种确信度上,对于新的或检验数据是有效的;(也就是具有一定的泛化能力)

3、是潜在有用的;(即使当下没有挖掘任务需要,但未来可能会使用)

4、是新颖的;

#模式兴趣度的客观度量:支持度、置信度;(有助于识别有趣的模式)

1、规则的支持度,表示事务数据库中满足规则的事务所占的百分比;(可以表示概率,P(XUY),同时包含X和Y的事务的概率)

形式:support(X=>Y)=P(XUY)

2、规则的置信度,评估所发现的规则的确信程度(类似模型准确率);(可以去条件概率,P(X|Y),既包含X的事务也包含Y的概率)

形式:confidence(X=>Y)=P(X|Y)

#一般的,每个兴趣度都与一个阈值有关联,该阈值可以由用户控制(如刷选条件),低于阈值的规则可能反应噪声、异常或少数情况,可能不太有价值。

#其它兴趣度度量包括分类(IF-THEN)规则的准确率与覆盖率。

#模式兴趣度的主观度量:反应特定用户需求和兴趣,是基于用户对数据的信念。

#模式兴趣度度量是不可或缺的,一般在挖掘之后使用,可以跟进各种模式的兴趣度对所使用的模式进行排位,过滤掉不感兴趣的模式。也可以用来指导和约束发现挖掘模式的过程,通过剪去模式空间中不满足预先设定的兴趣度约束子集,提高搜素性能。

#涉及的知识领域:统计学、机器学习、模式识别、可视化、算法、数据库和数据仓库、信息检索、高性能计算和许多应用领域的大型技术等。

#统计学:研究数据的收集、分析、解释、表示。

#统计学模型:用随机变量及其概率分布,刻画目标样本的行为,被广泛用于对数据和数据类建模。

#统计学方法:用来汇总或描述数据集,也可以用来验证数据挖掘结果。

#许多统计学方法具有很高的计算复杂度,当用于分布在多个逻辑或物理站点上的大型数据集时,应小心设计和调整算法,以降低计算开销。

1、监督学习:分类的同义词。

#学习过程中的监督来自训练数据集中样本的标记;

2、无监督学习:聚类的同义词。

#输入的数据集中的样本没有被标记。

3、半监督学习:数据集中使用标记的和未标记的样本。

#标记的样本训练模型,未标记的样本用来进一步改进类边界(也就是改进簇的规则)。

4、主动学习:让用户在学习过程中扮演主动角色。

#要求用户(例如领域专家)对一个可能来自未标记的实例集或由学习程序合成的实例进行标记。

#特点:通过主动地从用户获取知识来提高模型质量。

#数据库系统因其在处理非常大的、相对结构化的数据集方面的高度可伸缩性而闻名。

#许多数据挖掘任务都需要处理大型数据集,甚至处理实时的快速流数据。因此,数据挖掘可以很好的利用可伸缩的数据库技术,一遍获得在大型数据集上的高效率和可伸缩性。

#数据挖掘任务可以用来扩充数据库系统,以便满足高端用户复杂的数据分析需求。

#新的数据库系统使用数据仓库和数据挖掘机制,已经在数据库的数据上建立了系统的数据分析能力。

#信息检索(IR):搜索文档或文档中信息的科学。

#文档可以是文本或多媒体,并且可能驻留在Web上。

#传统的信息检索与数据库系统之间的差别:

1、信息检索假定所搜索的数据是无结构的;

2、信息检索查询主要用关键词,没有复杂的机构(不同与数据库系统中的SQL查询)。

#信息检索的典型方法——概率模型。

#文档的语言模型:生成文档中词的包的概率密度函数,语言模型之间的相似性可以度量两个文档之间的相似度。

#一个文本文档集的主题可以用词汇表上的概率分布建模,称作主题模型。一个文本文档可以涉及多个主题,可以看做主题混合模型。

#通过集成信息检索模型和数据挖掘技术,可以找出文档集中的主要主题,对集合中的每个文档,找出所涉及的主要主题。

1、商务而言,理解顾客、市场、供应、资源、竞争对手等信息,是非常重要的。

2、商务智能中的联机处理工具依赖于数据仓库和多维数据挖掘。

3、分类和预测计算是商务智能预测分析的核心。。

1、Web搜索引擎本质上是大型数据挖掘应用。

2、通常,用户查询的搜索结果用一张表返给用户(有时称作采样(hit)),包含网页、图像和其它类型的文件。

3、搜索引擎不同于网络目录,网络目录由人工编辑管理,搜索引擎按算法运行,或者是算法和人工输入的混合。

4、搜索引擎对数据挖掘提出了巨大挑战,大量的并且不断增加的数据,需要数以万计的计算机组成计算机云,共同挖掘。

#数据挖掘方法应该考虑数据的不确定性、噪声、不完全性等问题。

1、挖掘各种新的知识类型

2、挖掘多维空间中的知识

#在不同抽象层的多维(属性)组合中搜索有趣的模式,称为探索式多维数据挖掘。

#在数据立方体中挖掘知识可以显著的提高数据挖掘的能力和灵活性。

3、数据挖掘——跨学科的努力

#通过集成来自多学科的新方法可以显著增强数据挖掘的能力。

4、提升网络环境下的发现能力

#大部分的数据对象驻留在连接或互连的环境中,无论是Web、数据库关系、文件还是文档。

#多个数据对象之间的语义链接可以用来促进数据的挖掘。

5、处理不确定性、噪声或不完全数据

#错误和噪声可能干扰数据挖掘过程,导致错误的模式出现。

#数据清理、数据预处理、离群点检测与删除、不确定性推理,都是需要与数据挖掘过程集成的技术。

6、模式评估和模式或约束指导的挖掘

#数据挖掘模式是否有趣,要根据用户来定。

#模式的价值是基于给定用户类、用户确信度或期望来定的。

#通过使用兴趣度度量或用户指定的约束指导发现过程,可以产生更有趣的模式,压缩搜素空间。

#挖掘过程需要思考的问题:

#如何与数据挖掘系统交互?

#如何在挖掘过程中融入用户的背景知识?

#如何可视化与理解数据挖掘的结果?

1、交互挖掘

#数据挖掘过程应该是高度交互的。

#构建灵活的用户界面和探索式挖掘环境,是非常重要的,以便用户与系统交互。

#交互式挖掘允许用户在挖掘过程中动态的改变搜索的聚焦点,根据返回的结果提炼挖掘请求,并在数据和知识空间交互的进行下钻、切块、旋转,动态的探索“立方体空间”。

2、结合背景知识

#应把背景知识、约束、规则和关于所研究领域的其他信息结合到挖掘过程中,这些知识可用于模式评估,指引搜索有趣的模式。

3、特定的数据挖掘和数据挖掘查询语言

#查询语言(如SQL)在灵活的搜索中扮演了重要的角色,因为它允许用户提出特定的查询。

4、数据挖掘结果的表示和可视化

#数据挖掘系统是交互的(如搜索引擎),这点极其重要,这要求系统采用有表达能力的知识表示,以及用户友好的界面和可视化技术。

1、数据挖掘算法的有效性和可伸缩性

#有效性、可伸缩性、性能、优化、实时运行能力,是驱动驱动数据挖掘算法开发的关键标准。

2、并行、分布式和增量挖掘算法

#算法特点:把数据划分成若干“片段”,每个片段并行处理,搜索模式。

#原因:数据集容量巨大、数据的广泛分布、一些数据挖掘算法的计算复杂性。(有些数据挖掘过程的高开销和输入的增量特点,推动了增量数据挖掘)

#增量挖掘与新的数据更新结合在一起,而不必“从头开始”挖掘全部数据。

#增量算法增量的进行知识修改,修正和加强先前业已发现的知识。

#并行处理可以交互(如多个刷选条件同时执行),来自每部分的模式最终合并在一起。

#云计算和集群计算,使用分布式和协同的计算机处理超大规模计算任务,是并行数据挖掘研究的活跃主题。

#数据库类型的多样性给挖掘任务带来了挑战:

1、处理复杂的数据类型

2、挖掘动态的、网络的、全球的数据库

#难点:众多数据源被国际互联网和各种网络连接在一起,形成了一个庞大的、分布的和异构的全球信息系统和网络,而且数据拥有结构化、半结构化和非结构化的不同数据语义。

#好处:与从孤立的数据库的小数据集中发现的知识相比,挖掘庞大的、互连的信息网络可能帮助在异种数据集中发现更多的模式和知识。

1)需求是发明之母。

2)数据挖掘是从海量的数据中发现有趣模式的过程。

#作为知识发现过程,数据挖掘通常包括:数据清理、数据集成、数据选择、数据变换、模式发现、模式评估、知识表示。

3)有趣的模式

#有趣的模式:如果一种模式在某种确信度上对于检验数据是有效的、新颖的、潜在有用的,并且易于被人理解的。

#有趣的模式代表知识。

#模式兴趣度度量,无论是客观的还是主观的,都可以用来指导发现过程。

4)数据挖掘的多维视图

#维:指数据、知识、技术、应用。

5)只要数据对目标应用有意义,数据挖掘可以在任何类型的数据上进行。

6)数据仓库

#数据仓库中的数据,来自多个数据源,在一种同一的模式下存放,并且通常是汇总的。

#数据仓库提供一些数据分析能力,称作联机分析处理。

7)多维数据挖掘

#多维数据挖掘(又称探索式多维数据挖掘):把数据挖掘的核心技术与基于OLAP的多维分析结合在一起。在不同的抽象层的多维(属性)组合中搜索有趣的模式,从而探索多维空间。

8)数据挖掘功能

9)数据挖掘研究

#研究领域:挖掘方法、用户交互、有效性和可伸缩性、处理多种多样的数据类型。

THE END
1.数据挖掘类文章属于什么类型mob64ca12e83232的技术博客通过上述示例,我们简单地展示了数据挖掘的基本流程,包含数据加载、预处理、建模及评估。这些步骤在大多数数据挖掘项目中都是相似的。数据挖掘不仅仅是技术的应用,更是对数据理解和分析的深度思考。 随着数据量的增长和技术的发展,数据挖掘的潜力将愈发显著。未来,数据挖掘将在决策支持、市场分析、个性化推荐等领域发挥更https://blog.51cto.com/u_16213397/12827058
2.语音采集的数据如何使用语音采集的数据有着广泛的应用,涵盖了从个人消费产品到企业级解决方案的多个领域。以下是语音数据的一些主要使用方式: 1. 训练和优化语音识别模型 - 应用场景:智能助手、语音搜索、自动转录服务等。 - 使用方法:通过大量的语音样本(包括不同口音、语速、背景噪音条件下的录音)来训练深度学习模型,提高其准确性和鲁棒性https://fuxi.163.com/database/1343
3.C语言在数据挖掘中的作用编程语言C语言在数据挖掘中扮演着重要的角色,尽管它可能不是最常用的工具,但它的性能和灵活性使其在特定情况下非常有用。C语言在数据挖掘中的应用主要体现在以下几个方面: C语言在数据挖掘中的作用 高效处理大数据:C语言允许程序员直接操作内存,提高程序的执行效率,适合处理大规模数据集和复杂计算任务。 自定义算法开发:Chttps://m.yisu.com/zixun/942501.html
4.数据挖掘算法实战:从传统统计到机器学习的商业智能分析完整技术栈通过数据挖掘算法,可以对用户的行为进行分析,包括用户偏好、购买行为、活跃度等,从而为企业的精准营销、产品推荐等提供支持。 风险管理 利用数据挖掘算法可以对风险进行识别和评估,包括信用风险、市场风险、操作风险等,帮助企业更好地进行风险管理和决策制定。 https://www.jianshu.com/p/e8efcaaf4349
5.机器学习:开启智能未来的钥匙腾讯云开发者社区机器学习作为人工智能的核心方法,通过分析数据中的隐藏规律,让计算机从中获取新的经验和知识,不断提升和改善自身性能,从而像人一样根据所学知识做出决策。 机器学习涉及概率论、统计学、微积分、代数学、算法复杂度理论等多门学科,是一门多领域交叉学科。其应用范围极为广泛,涵盖自然语言处理、图像识别、推荐系统、金融https://cloud.tencent.com/developer/article/2478495
6.数据挖掘主要包含哪些功能?数据挖掘的功能数据挖掘主要包含哪些功能? 数据挖掘的功能主要包括,数据分类、数据估计、数据预测、数据关联分组、数据聚类,及数据循序样式采矿等六大功能。 数据分类 数据分类为数据挖掘中常见的功能之一,顾名思义即是将分析对象依不同的属性分类加以定义,建立不同的类组。数据挖掘中的分类是指针对未发生的结果进行预测分类,主要包括https://blog.csdn.net/duozhishidai/article/details/87968943
7.数据挖掘)(功能选择MicrosoftLearnSQL Server数据挖掘提供多种方法来计算这些分数,任何模型中应用的确切方法取决于以下因素:在模型中使用的算法 属性的数据类型 可对模型设置的任何参数 功能选择应用于输入、可预测属性或列中的状态。 在用于功能选择的分数完整时,只有算法选择的属性和状态才会包含在模型生成过程中并可用于预测。 即使您选择的可预测https://msdn.microsoft.com/zh-cn/library/ms175382.aspx
8.数据仓库和数据挖掘12篇(全文)(一) 数据挖掘的功能特征 (1) 自动预测趋势和行为:数据挖掘摒弃了以往的采用大量手工方式分析问题的路线, 能够自动的从大型的数据库中找到预测性信息。迅速而直接的根据数据本身, 得出结论。 (2) 关联分析:数据关联是数据库中一类存在的可被发现的重要知识。假若两个或多个变量的取值之间存在某种规律性, 就可以称https://www.99xueshu.com/w/ikeyy9nb2adc.html
9.数据挖掘论文4.DBMiner是由DBMiner Technology公司开发的,它提供多种数据挖掘算法,包括发现驱动的OLAP分析、关联、分类和聚类。特色是它的基于数据立方体的联机分析挖掘,它包含多种有效的频繁模式挖掘功能和集成的可视化分类方法 四、数据挖掘与管理会计 1.提供有力的决策支持 https://www.unjs.com/lunwen/f/20220924130749_5650839.html
10.人工智能算法的分类与应用人工智能 (AI) 是当前科技领域的热门话题,其核心是各种算法的灵活运用。AI算法不仅实现了智能预测、分类,还在数据挖掘、自然语言处理和推荐系统等领域发挥着重要作用。接下来,我们将以科普的视角,带您深入了解 AI 的主要算法及其广泛应用。 一、监督学习 https://mp.weixin.qq.com/s?__biz=MzI3MzQ1NjMwOA==&mid=2247549220&idx=4&sn=25aa18da4b1e2824371e552b0ca3c8e6&chksm=eb214cffdc56c5e9303367ae4087102996613151dfa3c11fafe88950b683dbc8dadedd63bcaa&scene=27
11.NIDIAdem2018破解版交互式数据分析管理软件NIDI您使用DIAdem NAVIGATOR以不同的文件格式挖掘和加载数据。您可以使用DIAdem VIEW查看数据,以图形方式分析曲线部分,以及编辑数据(例如,更正错误)。您可以使用DIAdem ANALYSIS以标准函数或您自己的公式以数学方式评估数据。您可以使用DIAdem REPORT创建记录数据和显示结果的多页报告。 DIAdem SCRIPT结合了脚本中的所有面板功能http://www.sd173.com/soft/7812.html
12.数据分析软件的功能有哪些帆软数字化转型知识库数据分析软件具备多种功能,包括数据清洗、数据整合、数据可视化、预测分析、报表生成、实时监控、数据共享、数据挖掘、用户权限管理等。其中,数据可视化是最重要的功能之一,能够将复杂的数据转化为直观的图表和图形,帮助用户更容易理解和分析数据。数据可视化通过图表、地图、热力图等多种方式展示数据,便于发现数据中的趋势https://www.fanruan.com/blog/article/69383/
13.单细胞分析的相关数据库教程,大概看下它的内容,最近的更新包含了52个study,数万个细胞的测序结果。 数据挖掘功能 按数据集进行挖掘,可视化,可以选择自己感兴趣的数据集,物种等,获取基本信息 我们来看一个黑色素瘤的单细测序结果: 进行可视化查看分析结果,比如tSNE的聚类结果: marker基因的表达热图: 还可以看实验设计的基本信息: 关于单细胞http://m.yunbios.net/Database-on-single-cell-analysis.html
14.(2)平台功能主要功能包含设备接入,设备管理,监控运维,通知管理构建物联感知体系需通过建设物联管理平台来满足功能需求,物联管理平台 通过硬件实施+云服务形式,为企业提供设备连接管理,设备数据采集,设备数 据监控,设备数据存储,设备安全认证等功能.支持各种工业硬件,机器手,智 能屏,传感器,数控机床等的接入管理. (2)平台功能 主要功能https://whsggzy.wuhu.gov.cn/EpointWebBuilderNew/WebbuilderMIS/attach/downloadZtbAttach.jspx?attachGuid=7163fc66-3b57-408b-956f-8c3876237eeb&appUrlFlag=ztbwh
15.数据挖掘有哪些功能导读随着大数据发展越来越好,数据挖掘成为了未来发展的一大趋势,数据挖掘和分析技术在各行业发挥着重要作用,小编为大家整理了数据挖掘的具体功能介绍,一起来看看吧。 数据挖掘有哪些功能: 数据挖掘通过预测未来趋势及行为,做出前摄的、基于知识的决策。数据挖掘的目标是从数据库中发现隐含的、有意义的知识,主要有以下五https://www.baijiao.org/school/zhengzhouxinyingdajiaoyu/news/14499.html
16.数据挖掘的六大主要功能数据挖掘的六大主要功能 数据挖掘的历史虽然较短,但从20世纪90年代以来,它的发展速度很快,加之它是多学科综合的产物,目前还没有一个完整的定义,人们提出了多种数据挖掘的定义,例如:SAS研究所(1997):“在大量相关数据基础之上进行数据探索和建立相关模型的先进方法”。Hand et al(2000):“数据挖掘就是在大型数据库https://www.cda.cn/view/25648.html
17.网络营销全部(1)分析PT使用的移动大数据精准营销核心功能。①用户画像。PT与京东、天猎平台合作,分析网上用户行为,利用平台的数据挖掘、用户画像功能,发现对美发、护发有需求的女性潜在客户。②精准广告的投放及服务信息的推送。根据用户画像,将产品广告信息精准地推送到这些人群手机端;向进入PT线下产品体验点周围2公里的女性用户和https://www.wjx.cn/xz/261160017.aspx
18.数据挖掘功能及各自方法总结数据挖掘功能的特点及主要挖掘方法一、数据挖掘功能的特点及主要挖掘方法数据挖掘的目标是从数据库中发现隐含的、有意义的知识,主要有以下几类 功能:概念描述概念描述又称数据总结,其目的是对数据进行浓缩,给出它的综合描述,或 者将它与其它对象进行对比。通过对数据的总结,可以实现对数据的总体把握。 最简单的概念描https://m.renrendoc.com/paper/215780489.html
19.什么是数据挖掘?数据挖掘具有哪些功能?数据挖掘是指从大量数据中提取隐含的、未知的、潜在的有用的信息,使其表现为概念、规则、规律、模式等形式。数据挖掘实质上是一个深层次的数据分析过程,即从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。 ( 1 )趋势和行为分析;( 2 )关联分析;( 3 )聚类分析;( 4 )概念描述;( 5 )偏差检测https://www.shuashuati.com/ti/b42dc41b1dec47e08e65ba734ea56cff.html