工业大数据3点特性解读,挖掘工业大数据有何意义?

工业大数据本身不仅具有广义大数据的3V或4V特性,还呈现出“多模态”、“强关联”、“高吞吐”三大特征。下面,我们一起来看看这3个特点的详细内容。

1.多模式

所谓多模态是指非结构化类型的工程数据,包括设计制造阶段的概念设计、详细设计、制造过程、包装运输等15大类业务数据,以及运行状态,服务保障阶段的维护计划和服务评估等14类数据。

2.强关联

所谓强关联,一方面是指在产品生命周期的不同环节,如设计、制造、服务等需要关联数据。数据反馈到设计制造阶段;另一方面,在产品生命周期的统一阶段,涉及不同学科、不同专业的数据。例如,民用飞机的预研过程将涉及总体设计方案数据、总体需求数据、气动设计和气动分析数据、声学模型数据和声学分析数据、飞机结构设计数据、部件和总成强度分析数据,以及模电系统模型数据、多电系统设计仿真数据、各种航电系统模型仿真数据、导航系统模型仿真数据、系统及部件健康模型数据、系统及部件可靠性分析数据等,这些数据是需要关联的。

3.高吞吐量

所谓高吞吐量,是指工业传感器需要超大规模数据的瞬时写入。嵌入传感器的智能互联产品已成为工业互联网时代的重要标志和未来工业发展的方向。机器数据已成为工业大数据的主体。

二、工业大数据的数据挖掘

通过上面的介绍,想必大家对工业大数据的三个特点已经具备了清晰的认识。在这部分,小编将和大家共同来了解下有关工业大数据中的数据挖掘的部分。

1、工业大数据的数据挖掘过程

数据挖掘过程一般分为三个部分:数据准备、数据挖掘、结果表达和解释。在数据准备阶段,需要对数据集进行选择和预处理。数据预处理包括数据清洗、数据集成、数据归约和数据转换。

2、工业大数据数据挖掘的基本算法

数据挖掘是一种获取知识的技术。它的基础是数据,它的手段是各种算法,其目的是获取数据中包含的知识。数据挖掘从新的角度将数据库技术、统计学、机器学习、信息检索技术、数据可视化和模式识别与人工智能有机结合。它可以结合各个领域的优势,从而从数据中提取出其他传统方法无法发现的有用知识。使用数据挖掘进行数据分析的常用方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析等,它们分别从不同的角度挖掘数据。数据挖掘有很多算法,随着科学技术的不断发展,新的算法将不断被加入。

3.数据挖掘的目的

对工业大数据进行数据挖掘可以分为三层,一层是提供数据源和数据准备的数据层,一层是提供算法、引擎和接口的算法层,一层是将数据挖掘结果应用于实践的应用层。数据挖掘的目的是在应用层应用实际应用的描述性知识和预测性知识。

最后,小编诚心感谢大家的阅读。你们的每一次阅读,对小编来说都是莫大的鼓励和鼓舞。最后的最后,祝大家有个精彩的一天。

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

加利福尼亚州圣克拉拉县2024年8月30日/美通社/--数字化转型技术解决方案公司Trianz今天宣布,该公司与AmazonWebServices(AWS)签订了...

伦敦2024年8月29日/美通社/--英国汽车技术公司SODA.Auto推出其旗舰产品SODAV,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。SODAV工具的开发耗时1.5...

北京2024年8月28日/美通社/--越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

要点:有效应对环境变化,经营业绩稳中有升落实提质增效举措,毛利润率延续升势战略布局成效显著,战新业务引领增长以科技创新为引领,提升企业核心竞争力坚持高质量发展策略,塑强核心竞争优势...

北京2024年8月27日/美通社/--8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。活动现场NVI技术创新联...

北京2024年8月27日/美通社/--在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

山海路引岚悦新程三亚2024年8月27日/美通社/--近日,海南地区六家凯悦系酒店与中国高端新能源车企岚图汽车(VOYAH)正式达成战略合作协议。这一合作标志着两大品牌在高端出行体验和环保理念上的深度融合,将...

上海2024年8月28日/美通社/--8月26日至8月28日,AHNLAN安岚与股神巴菲特的孙女妮可巴菲特共同开启了一场自然和艺术的疗愈之旅。妮可·巴菲特在疗愈之旅活动现场合影...

8月29日消息,近日,华为董事、质量流程IT总裁陶景文在中国国际大数据产业博览会开幕式上表示,中国科技企业不应怕美国对其封锁。

上海2024年8月26日/美通社/--近日,全球领先的消费者研究与零售监测公司尼尔森IQ(NielsenIQ)迎来进入中国市场四十周年的重要里程碑,正式翻开在华发展新篇章。自改革开放以来,中国市场不断展现出前所未有...

上海2024年8月26日/美通社/--今日,高端全合成润滑油品牌美孚1号携手品牌体验官周冠宇,开启全新旅程,助力广大车主通过驾驶去探索更广阔的世界。在全新发布的品牌视频中,周冠宇及不同背景的消费者表达了对驾驶的热爱...

此次发布标志着Cision首次为亚太市场量身定制全方位的媒体监测服务。芝加哥2024年8月27日/美通社/--消费者和媒体情报、互动及传播解决方案的全球领导者Cis...

上海2024年8月27日/美通社/--近来,具有强大学习、理解和多模态处理能力的大模型迅猛发展,正在给人类的生产、生活带来革命性的变化。在这一变革浪潮中,物联网成为了大模型技术发挥作用的重要阵地。作为全球领先的...

北京2024年8月27日/美通社/--高途教育科技公司(纽约证券交易所股票代码:GOTU)("高途"或"公司"),一家技术驱动的在线直播大班培训机构,今日发布截至2024年6月30日第二季度未经审计财务报告。2...

8月26日消息,华为公司最近正式启动了“华为AI百校计划”,向国内高校提供基于昇腾云服务的AI计算资源。

THE END
1.干货,数据挖掘详细介绍数据挖掘是一种从大量数据中提取有用信息和知识的技术。它涉及到多个学科,包括数据库技术、统计学、机器学习、人工智能等。数据挖掘的目的是发现隐藏在数据中的模式、趋势和关联,从而帮助人们更好地理解数据,做出更准确的决策。数据挖掘的过程通常包括以下几个步骤:数据预处理:对收集到的数据进行清洗、整理、转换等https://baijiahao.baidu.com/s?id=1784612201456908507&wfr=spider&for=pc
2.数据挖掘技术的目的是什么帆软数字化转型知识库数据挖掘技术的目的在于发现数据中的模式、进行预测分析、提高决策支持、优化业务流程、发现异常行为、增强客户关系管理。这些目的是通过对大量数据进行深入分析和处理来实现的。以发现数据中的模式为例,这一目的不仅仅是简单地查看数据,而是通过复杂的算法和技术,从表面看似无关联的数据中提取出有价值的信息。例如,通过数https://www.fanruan.com/blog/article/588442/
3.数据挖掘的目的是什么数据挖掘的目的在于数据挖掘的目的是什么 数据挖掘的目的在于 1)数据挖掘的一种定义 是一项通过探測大量数据以发现有意义的模式和规则的业务流程。 数据挖掘是一种业务流程,它以其他业务流程产生的大量数据为输入,一般经过收集,清洗,整理。识别、分析和度量等加工,得到某种有意义的模式或规则作为输出。https://blog.51cto.com/u_13303/8789037
4.大数据与分析:数据挖掘概念及流程数据挖掘是一个从大量数据中提取有价值信息或模式的过程,它依赖于统计学、机器学习、数据库技术和人工智能等多个领域的知识和技术。以下是数据挖掘的概念及其流程的详细解释: 一、数据挖掘的概念 数据挖掘(Data Mining)是指通过特定的计算机算法对大量的数据进行自动分析,以揭示数据中的隐藏模式、未知的相关性和其他有https://blog.csdn.net/NSAcbba/article/details/143417836
5.数据挖掘的主要目的是()。A.从大量数据中提取出有用的信息和知识B【答案解析】数据挖掘的主要目的是()。A.从大量数据中提取出有用的信息和知识B.通过多媒体技术实现信息检索C.对检索对象进行著录和分类,便于检索D.根据数据资料的外在特征实现信息检索https://www.cnitpm.com/st/5530614391.html
6.什么是数据挖掘,数据挖掘的知识介绍3.数据挖掘的目的 数据挖掘的主要目的是从数据中发现有用的信息,这些信息可以让人们对某个领域进行更深入的了解,并为相关决策提供支持。数据挖掘的目标通常包括以下几个方面: 分类:将数据划分为不同的类别,例如针对客户的购买记录进行分类,以便企业更好地管理和营销产品。 https://www.eefocus.com/baike/1339577.html
7.基于.NET实现数据挖掘神经网络算法船长本篇我们将要总结的算法为:Microsoft 神经网络分析算法,此算法微软挖掘算法系列中最复杂也是应用场景最广泛的一个,简单点讲:就是模拟我们的大脑从茫茫的数据海洋中思考出有用的信息,来达到数据挖掘的目的。原理可以参考上篇。 应用场景介绍 关于Microsoft神经网络算法的应用场景还是蛮多的,在上一篇原理篇我们就介绍过,https://www.cnblogs.com/captain_ccc/articles/4093698.html
8.数据挖掘的主要目的是知识发现,是从大型数据库中的数据中提取人们数据挖掘的主要目的是知识发现,是从大型数据库中的数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的、潜在有用的信息A.正确B.错误的答案是什么.用刷刷题APP,拍照搜索答疑.刷刷题(shuashuati.com)是专业的大学职业搜题找答案,刷题练习的工具.一键将文档转化为在线题https://www.shuashuati.com/ti/d69258c621cd4ba4b5a50b5b4f3f2ff0.html?fm=bdbdsc284554346d188e066f7d53fb1167212
9.4个步骤,构建一个有指导的数据挖掘模型腾讯云开发者社区数据挖掘的目的,就是从数据中找到更多的优质用户。什么是有指导的数据挖掘方法模型,以及数据挖掘如何构建模型。在构建一个有指导的数据挖掘模型,首先要理解和定义一些模型试图估计的目标变量。一个典型的案例,二元响应模型,如为直接邮寄和电子邮件营销活动选择客户的模型。模型的构建选择历史客户数据,这些客户响应了以前类https://cloud.tencent.com/developer/article/1041871
10.王胜捷生成式人工智能文本与数据挖掘的合理边界与侵权规制其中,仅有使用作品构成“表达性使用”时方产生侵权风险。然而,现行著作权法对于该问题规定的缺失以及适用困难使得生成式人工智能文本与数据挖掘行为采用何种制度进行规制成为学界的争议焦点。基于“促进创新和文化繁荣”与“保护作者著作权”的“二元阶层”立法目标,以“是否具有商业目的”为标准设立分阶段豁免制度能够有效https://www.jfdaily.com/sgh/detail?id=1421857
11.大数据挖掘意义1、数据挖掘的目的和意义 2、数据挖掘的意义及价值 大数据挖掘是当今信息时代的一项重要技术,它的意义不仅仅局限于某个行业,而是在各个行业中都有着深远的影响和应用。 大数据挖掘在商业领域的意义非常重大。通过对大量的数据进行深入挖掘和分析,企业可以更好地了解市场需求和消费者行为,从而制定出更准确的营销策略和产http://chatgpt.cmpy.cn/article/5067927.html
12.版权立法中文本数据挖掘侵权例外规则的构建版权资讯摘要:以计算机软件和大数据为支撑的文本数据挖掘技术已成为数字时代各行各业智能化发展的基础工具。文本数据挖掘首先需要收集、复制海量数据或作品等受著作权法保护的信息建立数据库。为学术研究目的而复制他人作品进行文本数据挖掘,在越来越多的法域被视为合理使用。我国著作权立法中应尽快确立以论文查重为代表的文本数据http://www.ccct.net.cn/html/bqzx/2023/0601/4369.html
13.数据挖掘论文首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全性就很难得到保障,在档案管理中运用数据挖掘技术,可以让档案的信息数据得到分析统计,归纳总结,不必次次实物查阅,https://www.unjs.com/lunwen/f/20220924130749_5650839.html
14.商战数据挖掘:你需要了解的数据科学与分析思维第一个问题是:“用户是否能自然地分成不同群组?”这个分组任务并没有任何明确的目标或目的,而这种没有目标的数据挖掘问题就被称为无监督的数据挖掘问题。另一个非常相似的问题是:“能否找到在合约到期后极有可能不续约的那群用户?”此处出现了特定目标:客户在合约到期后会不会续约?在此问题中,我们是出于“基于https://www.ituring.com.cn/book/tupubarticle/28952
15.信息系统项目管理师高分考试答题技巧和复习重点大沈博客需求分析方法有: (1)结构化分析方法:包括面向数据流的结构化分析方法,面向数据流结构的Jackson方法和面向数据结构的结构化数据系统开发方法。 (2)面向对象的分析方法:从需求分析建立的模型的特性来分,需求分析方法又分为静态分析方法和动态分析方法。 结构化分析方法 https://ds.ink/2022/04/9432.html
16.数据挖掘的目的不在于数据采集策略,而在于对于已经存在的数据进行模型的数据挖掘的目的不在于数据采集策略,而在于对于已经存在的数据进行模型的发掘。 A.正确 B.错误 点击查看答案http://www.ppkao.com/wangke/daan/1a84d01b1be3444798ecd94a5916c6d5
17.数据挖掘的过程张杰整理数据挖掘过程中各步骤的大体内容如下: 第一步:确定挖掘目的。认清数据挖掘的目的是数据挖掘的重要一步。挖掘的最后结果是不可预测的,但要探索的问题应是有预见的。不能盲目的为了数据挖掘而数据挖掘。 第二步:数据准备。数据准备分为三个阶段。①数据的选择:搜索所有与目标对象有关的内部和外部数据信息,并从中选https://maimai.cn/article/detail?fid=1405334297&efid=7lwV824VMzvaUfEhWMvd3A