数据挖掘技术在中医处方经验研究中的应用

数据挖掘是从大量数据中挖掘有趣模式和知识的过程。从广义上说,数据挖掘是对数据库知识发现(KnowledgeDiscoveryinDatabases,KDD)的一个过程。作为一种通用技术,数据挖掘可以用于任何类型的数据,只要数据对目标应用是有意义的,数据源可以包括数据库、数据仓库、web、其他信息存储库或动态的流入系统的数据[2]。

1.2中医药数据挖掘的意义

中医药领域的处方中通常包含大量的药物及其剂量组成,伴随着医院信息化建设的大力推进,这些药方多以数据库形式被保存,运用数据挖掘技术对中药数据进行科学分析,从而发现其中的配伍特点和规律成为很有现实意义的一项工作。

数据挖掘有很多模式,常见有关联规则[3]、聚类算法[4]、分类算法[5]等。关联规则挖掘最初仅限于事务数据库的布尔型关联规则,近年来广泛应用于关系数据库[6]。关联规则反映一个事物与其他事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么其中一个事物就能够通过其他事物预测到。

关联规则就是支持度和信任度分别满足用户给定阈值的规则。Apriori[7]是关联规则模型中的经典算法。本文主要使用基于频繁项集的Apriori算法进行数据建模,用以发现中药配伍中的规律性。发现关联规则需要经历如下两个步骤:

步骤一:通过迭代,检索出事务数据库中的所有频繁项集,即支持度不低于用户设定的阈值的项集;

步骤二:利用频繁项集构造出满足用户最小信任度的规则。

2数据特征化和预处理

2.1实验数据集

本文实验数据来自河北中医学院附属医院肾内科陈志强教授于2014年5月至2015年7月诊治的早中期慢性肾衰竭患者的病案。采集的病案内容包括患者姓名、性别、年龄、原发病、症状、体征、肾功能指标、中医证候、中药处方等。摘取其中的中药信息,按照《中药大辞典》[8]统一药物名称。

2.2数据特征化

统计数据集的全部223条中医处方,共出现中药194味,根据专业经验,我们选取频数在10%以上的中药(视为高频药物)进行数据挖掘。由于中药处方中的中药名称以中文形式表示,因此需要将其进行易于数据挖掘算法识别的数据特征化处理,方法如下:

(一)药物表的特征化方法

根据医务工作者的经验,将治疗该病症的常见中药分为活血化瘀通经类、清热祛湿泄浊类、行气燥湿化痰类、益气健脾温阳类、补益脾肾之阳类、滋养肝肾之阴类等六大类。将高频药物分别归于这六大类中,针对每大类建立相应的数据表。每条数据采用布尔常量的表示形式如图1所示。

其中,第一项表示病人编号,每一条记录表示一位病人的用药信息,编号之后的每一位布尔数据表示某味中药是否在该处方中出现,1表示出现,0表示未出现。

(二)类别表的特征化方法

为了进一步分析各大类之间的关联性,建立一个数据类别表(同一条处方中出现某一类药物中两味或两味以上,即判定使用了该类别中药)。每条记录表示一位病人用药的类别信息,其中第一项表示病人编号,编号之后的每一位表示该类别药物是否在该处方中使用,1表示使用,0表示未使用。

按照上述方法建成中药药物数据库,其中包括:包含所有药物的处方数据集、统计药物频次的药物计数数据集、由专业医生按照性味、功用划分的六种不同类别的高频药物数据集以及判断处方中是否使用某类药物的类别数据集。

3中医处方经验的挖掘方法

3.1对每一类药物中包含的各味中药进行关联规则建模

首先对数据库中的药物进行频数统计,即在处方中出现的次数;然后将数据库中所有同类别的药物按照其在整体处方中出现的频数降序排列。如果药物排列靠前说明其在处方中出现频率较高,为医生的常用中药,具有较高的参考价值。同时,参考专业医生的经验,本文将支持度和置信度的阈值均设置为10%,将其视为指导临床应用意义较大。对各类药物数据采用Apriori算法建模,生成每一类别中药间的关联规则。

3.2对六类药物之间进行关联性规则建模

逐条分析223条中药处方中所包含的药物类别(同一条处方中出现某一类药物两味或两味以上,即认定含有该类别中药),统计223条中药处方中每一类别药物的应用频数,将其在数据库中由高到低依次排列。根据专业医生的经验,设置支持度和置信度的阈值均为10%,将其视为指导临床应用意义较大。对类别数据采用Apriori算法建模,生成六类中药其类别之间的关联规则。

4关联性分析

4.1同类别中药的关联分析

将关联规则按照支持度降序排序,体现出常用药对以及多味中药同时出现的规律。以第一大类药物为例,通过对关联规则的统计分析发现:在此类中药处方中,三味中药同时出现的概率高达65%;四味中药中药同时出现的概率大约在31%左右;五味中药同时出现的概率减少到14%左右;六味中药同时出现的概率骤减到1%;而七味及以上中药同时出现的概率则为0。第一类药物的部分关联规则如表1。

对同一类药物,本文采用定向网络关系图表示药对之间的关系。连接两位中药之间的连线越粗,表明这个药对出现在处方中的频数越高;越细就表明这个药对出现在处方中的频率越低。图2所示为输出第一类药物中频数最高的中药与其它各味中药的关联关系的定向网络图。

结论分析:

纵观全部类别的所有频繁项集,发现在各类药物中,往往是同类别药物多味联用,以增强其功效;而在联用时,又会有一定的味数限制,数目通常为三味至五味为多。通过定向网络图可以分析出针对某一种药物与其它中药成对出现的规律:由处方中频数高的药物组成的药对,其之间的关联关系更为密切。

4.2不同类别药物之间的关联性分析

在223条有效的类别数据记录中,生成的规则总数为154条,为了便于结果分析,将其按照支持度降序排列。通过对关联规则的统计分析得出:前两类药的支持度高达95.5%;前三类药的支持度为89%;前四类药的支持度为70.9%;前五类药的支持度骤减到25.6%;而全部六类药的支持度仅为5.8%。现仅摘取前项含有前两类中药的关联规则见表2。

前四类中药之间的相互关系最为密切,其次是这四类中药分别与第五、六类之间的关系,而第五、六类中药之间关系的密切程度则大大降低。从关联规则的结果可以分析得出前四个类别的药物属于常用和联用的药物。

5结语

本文通过对中药数据集的特征化处理,采用基于频繁项集的Apriori经典关联规则算法,对中医处方中药物的频繁项集和药物之间的关联关系进行了有益的探索,发现了常用药物组合及配伍特点,获得了普通处方分析较难获得的处方经验信息。实验结果证明:使用关联规则对中药数据库建模,可以挖掘出中医在治疗某种疾病方面的用药特点,为研究临床用药规律提供了有效方法。

参考文献:

[1]ViktorMayer-SchonbergerKennethCukier盛杨燕,周涛译大数据时代[M].浙江人民出版社.2013.1

[2]jiaweihanMichelineKamberJianPei.数据挖掘概念与技术[M].范明孟晓峰译.机械工业出版社.2012:243

[3]毛宇星,陈彤兵,施伯乐.一种高效的多层和概化关联规则挖掘方法[J].软件学报,2011,22(12):2965-2980.

[4]陈克寒,韩盼盼,吴建.基于用户聚类的异构社交网络推荐算法[J]计算机学报,2013,36(2):350-359

[5]张琳,陈燕,李桃迎.决策树分类算法研究[J].2011,37(13):66-68

[6]杨秀萍.大数据下关联规则算法的改进及应用[J].计算机与现代化,2014,(12):23-27

[7]AGRWALR,SRIKANR.Fastalgorithmsforminingassociationrulesinlargedatabases[C]/Proceedingsofthe20thInternationalConferenceonVeryLargeDataBases.SanFrancisco:MorganKaufmannPublishers,1994:487—499.

[8]江苏新医学院.中药大辞典.上海:上海科学技术出版社,1986.

THE END
1.数据挖掘有什么作用与意义帆软数字化转型知识库5、提升客户满意度:通过分析客户数据,企业可以了解客户需求和偏好,从而提供更加个性化的服务,提升客户满意度。 6、推动创新:数据挖掘可以发现新的市场机会和技术趋势,从而推动企业的创新和发展。 三、数据挖掘的意义 1、增强竞争力:在市场竞争日益激烈的今天,数据已经成为企业的重要资产。通过数据挖掘,企业可以在竞争中https://www.fanruan.com/blog/article/575539/
2.什么是数据挖掘?为什么它如此重要?随着更多的用户体验和更大的数据集,数据挖掘变得更加有用和有价值。庞大的数据集被认为拥有更多的智能和洞察力。而且,随着用户越来越熟悉数据挖掘工具并学会理解数据库,他们在分析和探索中变得更具实验性和创造性。 数据挖掘的意义 数据挖掘的主要优势在于它能够识别来自不同资源的大量数据中的关系和模式。随着来自不同https://ai.qianjia.com/html/2023-03/27_400072.html
3.大数据挖掘意义2、数据挖掘的意义及价值 大数据挖掘是当今信息时代的一项重要技术,它的意义不仅仅局限于某个行业,而是在各个行业中都有着深远的影响和应用。 大数据挖掘在商业领域的意义非常重大。通过对大量的数据进行深入挖掘和分析,企业可以更好地了解市场需求和消费者行为,从而制定出更准确的营销策略和产品定位。通过对消费者购买http://chatgpt.cmpy.cn/article/5067927.html
4.终于有人把数据挖掘讲明白了数据挖掘的意义这一时代背景下的数据信息,在规模与数量上相较过去都有了显着的扩充,在挖掘、应用上难度较大。因此,运用数据挖掘技术提升数据信息挖掘的便利性与准确性具有重要的意义。数据挖掘被用于业务和研究的很多领域中,包括产品开发、销售和市场营销、遗传学和控制论,等等。https://blog.csdn.net/Java_ZZZZZ/article/details/127362749
5.一文揭秘数据挖掘的重要性和意义数据挖掘作为一种有效的探索性分析工具,正在广泛地应用于各种领域。通过挖掘大量数据,实现对隐藏在其中的价值信息的发掘和分析,数据挖掘有助于提高决策质量和业务水平,为企业和研究机构创造更大的价值。那么你知道什么是数据挖掘?数据挖掘有哪些应用?常用的数据挖掘方法有哪些?快来跟小编一起来详细了解下吧! https://www.kkidc.com/about/detail/hcid/196/id/1855/
6.数据挖掘在管理会计中的重要意义数据挖掘在管理会计中的重要意义 【摘要】数据挖掘是从海量数据中发现和提取知识和信息的过程。在管理会计领域中运用数据挖掘技术,寻求和发现更多的企业顾客、供应商、市场以及内部流程优化的信息,将为企业决策者提供更为广泛而有效的决策依据,提高企业战略竞争能力。本文简要介绍了数据挖掘的基本概念和方法,在此基础上重https://www.jy135.com/guanli/327644.html
7.数据挖掘之于经济管理学科的意义是什么?数据挖掘之于经济管理学科的意义是什么? 人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。 经管之家是国内活跃的在线教育咨询平台! 经管之家新媒体交易平台 https://bbs.pinggu.org/jg/guanli_guanlixue_2347769_1.html
8.《医疗革命》的读书笔记3)原理:本案例的数据挖掘意义是巨大的,即使是图像的人工智能处理也可以用“支持向量机”这样一个算法来解决。首先搜索乳腺癌的CT图像数据,剔除噪音,用算法来提取图像纹理与灰度特征,分别建立健良性/恶性识别模块,其中的图像增强、灰度特征提取,纹理特征提取都是数据挖掘算法完美的展现,把一帧图像划分为无数个点阵与方https://www.jianshu.com/p/2464a779f6be
9.商业银行数据仓库建设10篇(全文)商业智能的本质, 是提取收集到的数据, 进行智能化的分析, 揭示企业的运作和市场情况, 帮助管理层作出正确明智的经营决定。一般常规的业务操作, 通常都会产生大量的数据, 如存单、交易流水以及客户资料等, 其中一部分是决策关键数据, 但并不是所有的数据都对银行决策有决定意义。商业智能收集、清理、管理和分析这些数https://www.99xueshu.com/w/ikeyu3nysy5s.html
10.数据挖掘在管理会计中运用的重要意义(1)Word模板下载本模板为数据挖掘在管理会计中运用的重要意义(1),格式为word,论文风格,可用于校园教育演讲展示,文字图片可以直接替换,使用简单方便。https://m.tukuppt.com/muban/kbwnkkbx.html
11.什么是数据挖掘,数据挖掘的知识介绍它可以帮助企业从数据中找到商业机会,如精细的产品定位、优化营销策略、识别欺诈行为等;在科学研究方面,数据挖掘可以帮助研究人员理解复杂的自然现象或社会现象,如预测气候变化、发现新药物等。因此,数据挖掘可以帮助人们更好地理解和利用大数据,具有重要的意义。https://www.eefocus.com/baike/1339577.html
12.数据挖掘与分析心得体会由上可见,数据挖掘和数据分析虽然概念上层次清晰,作用上分工明确(数据分析主要以上数理统计为主,数据挖掘主要是挖掘算法为主)。但很明显的是,数据挖掘必须借助数据分析的有关方法来挖掘出有效的,对目标应用有意义的模式和知识。或者可以说:数据挖掘也可以是数据分析的一种! https://www.360wenmi.com/f/file46470luq.html
13.数据转换的意义在哪里呢?四、数据挖掘与分析 数据转换是数据挖掘和分析的基础,只有经过转换后的数据才能被用于深入挖掘和分析。数据转换可以使得原始数据更加适合进行挖掘和分析,从而发现隐藏在数据中的关联和模式,为业务决策提供更好的支持。 综上所述,数据转换在数据分析和决策中具有重要的意义。通过数据转换,我们可以消除原始数据中存在的问题https://www.freedoonline.com/news_show/402.html
14.数据挖掘理论在数据采集中的运用与此同时,数据采集平台只是为了提供数据,而在数据挖掘理论内容的分析过程中,是为了发现数据与数据之间的关联性,挖掘出数据检测中的基本理念,从而在根本意义上为技术的应用建立科学性的依据。 三、结束语 总而言之,在数据挖掘平台建立的过程中,为了实现数据采集平台的应用技术,就应该在采集平台建立的同时,强化数据挖掘https://biyelunwen.yjbys.com/fanwen/wangluogongcheng/606406.html
15.大数据在高等教育领域中的应用及面临的挑战国家政策法规大数据在高等教育领域应用对完善学校规划、促进学校发展,感知教学现实、提升教学效能,优化学习经历、提高学习质量以及促进科学研究、推动跨学科发展具有重要意义。教育大数据分析主要采用两种技术,即教育数据挖掘与学习分析。在高等教育的教与学领域中,这两种技术常用的方法包括分类与预测、聚类以及异常值检测等。大数据在高等https://manager.hkxy.edu.cn/s.php/pgztw/item-view-id-54267.html
16.数据挖掘论文在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全https://www.unjs.com/lunwen/f/20220924130749_5650839.html
17.数据分析报告范文(精选10篇)不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。一下是我参阅资料总结的设计数据挖掘的步骤: ① 理解数据和数据的来源https://mip.wenshubang.com/baogao/155767.html