数据挖掘:基本概念理解何永灿

数据挖掘:从大量数据中挖掘有趣模式和知识的过程。

1、数据清理:消除噪声和删除不一致数据;

2、数据集成:多种数据源组合在一起。

4、数据变换:通过汇总或聚集操作,把数据变换和统一成适合挖掘的形式。

基本步骤、使用智能方法提取数据模式

根据某些兴趣度度量,识别代表知识的真正有趣的模式。

使用可视化和知识表示技术,向用户提供挖掘的知识。

#关系型数据库是数据挖掘最常见、最丰富的信息源,是数据挖掘研究的一种主要数据形式。

数据仓库:一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。

#特点:

1、数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构成。

2、通常,数据仓库称作数据立方体(datacube)的多维数据结构建模。其中每个维对应于模式中的一个或一组属性,而每个单元存放某种聚集度量值,如count或sum。

(数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据)

1、数据数据库的每一个记录代表一个事务。

2、通常一个事务包含一个唯一的事务标识号(trans_ID),以及一个组成事务的项的列表。

3、事务可以存放在表中,每个事务一个记录。

#数据挖掘功能用于指定数据挖掘任务发现的模式。(模式,根据不同的挖掘任务,所使用的不同的挖掘方法)

#数据挖掘任务任务可以分为两类:

1、描述性(descriptive):刻画目标数据中数据的一般性质;

2、预测性(predictive):在当前数据上进行归纳,一遍做出预测;

#描述数据的方法:

1、数据特征化

#数据特征化:目标数据的一般特性或特征的汇总。

#数据特征化的结果:饼图、条图、线图、多维数据立方体、包含交叉表在内的多维表。(也可以用广义关系或者规则(称特征规则)形式提供)

#例,挖掘任务:汇总一年之内在淘宝花费2万元以上的顾客特征。

#客户数据信息特征化的结果可以是顾客的概况:年龄在30~45岁、有工作、有很好的信用等级。

#数据挖掘应对允许用户在任意维下钻,一遍根据这些维度观察用户。

2、数据区分

#数据区分:将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。

#数据区分的结果:类似特征描述,但区分描述应当包括比较度量,以便帮助区别目标类和对比类。

#例,挖掘任务:比较两组顾客——定期购买手机的顾客和不经常购买这种产品的顾客。

#结果描述:提供这些顾客比较的概况

1、频繁模式:在数据中频繁出现的模式。

频繁项集:频繁的在事务数据集中一起出现的商品的集合;(如,超市中被许多顾客频繁地一起购买的牛奶和面包)

频繁子序列(又称序列模式):如,淘宝上顾客倾向于先购买手机,再购买保护套,然后再购买手机保护膜,这样一个模式就是一个(频繁)序列模式。

频繁子结构:涉及不同的数据结构形式(如,图、树、格),可以与项集或子序列结合在一起。(如果一个子结构频繁地出现,则称它为(频繁)结构模式)

#例,挖掘任务——哪些商品经常被一起购买。

结果1:buys(X,"computer")=>buys(X,"software")[support=1%,confidence=50%]

a、X是变量,代表顾客;

b、confidence:置信度或确信度,50%表示如果一味顾客买了电脑,则其会购买软件的可能性是50%;

c、support:支持度,1%意味着,所分析的所有事务的1%显示电脑和软件一起被购买;

结果2:简化为"computer=>software[1%,50%]"

#通常,一个关联规则被认为是无趣的而被丢弃;也就是,该规则不能同时满足“最小支持度阈值”和“最小置信度阈值”。

#频繁项集挖掘是频繁模式挖掘的基础。

#不同与分类和回归分析标记类的数据集,聚类(clustering)是分析数据对象(也就是样本),而不考虑类标号。

#许多情况下,样本数据并不存在标记,可以使用聚类产生数据组群的类标号。

#对象根据最大化类内相似性、最小化类间相似性的原则进行聚类或分组。也就是说,对象(一类样本)的簇(cluster,一类样本共同的特征)这样形成,使得相比之下在同一簇中的对象(样本)具有很高的相似性,而与其它簇中的对象很不相似。

#聚类分析所形成的每一个簇(也就是一种分类)都可以看做一个对象类,由它可以导出规则(符号此规则的样本就可以归为该簇(或该类))。

#聚类便于分类法的形成,将观测组织成类分层结构,把类似的事件组织在一起。

#离群点:数据集中,与其它样本的一般行为或模型不一致的样本。

#离群点数据分析也称作“离群点分析”或“异常挖掘”。

#有趣的模式代表知识,其特点:

1、易于被人理解;(也可以理解该挖掘方法的可解释性)

2、在某种确信度上,对于新的或检验数据是有效的;(也就是具有一定的泛化能力)

3、是潜在有用的;(即使当下没有挖掘任务需要,但未来可能会使用)

4、是新颖的;

#模式兴趣度的客观度量:支持度、置信度;(有助于识别有趣的模式)

1、规则的支持度,表示事务数据库中满足规则的事务所占的百分比;(可以表示概率,P(XUY),同时包含X和Y的事务的概率)

形式:support(X=>Y)=P(XUY)

2、规则的置信度,评估所发现的规则的确信程度(类似模型准确率);(可以去条件概率,P(X|Y),既包含X的事务也包含Y的概率)

形式:confidence(X=>Y)=P(X|Y)

#一般的,每个兴趣度都与一个阈值有关联,该阈值可以由用户控制(如刷选条件),低于阈值的规则可能反应噪声、异常或少数情况,可能不太有价值。

#其它兴趣度度量包括分类(IF-THEN)规则的准确率与覆盖率。

#模式兴趣度的主观度量:反应特定用户需求和兴趣,是基于用户对数据的信念。

#模式兴趣度度量是不可或缺的,一般在挖掘之后使用,可以跟进各种模式的兴趣度对所使用的模式进行排位,过滤掉不感兴趣的模式。也可以用来指导和约束发现挖掘模式的过程,通过剪去模式空间中不满足预先设定的兴趣度约束子集,提高搜素性能。

#涉及的知识领域:统计学、机器学习、模式识别、可视化、算法、数据库和数据仓库、信息检索、高性能计算和许多应用领域的大型技术等。

#统计学:研究数据的收集、分析、解释、表示。

#统计学模型:用随机变量及其概率分布,刻画目标样本的行为,被广泛用于对数据和数据类建模。

#统计学方法:用来汇总或描述数据集,也可以用来验证数据挖掘结果。

#许多统计学方法具有很高的计算复杂度,当用于分布在多个逻辑或物理站点上的大型数据集时,应小心设计和调整算法,以降低计算开销。

1、监督学习:分类的同义词。

#学习过程中的监督来自训练数据集中样本的标记;

2、无监督学习:聚类的同义词。

#输入的数据集中的样本没有被标记。

3、半监督学习:数据集中使用标记的和未标记的样本。

#标记的样本训练模型,未标记的样本用来进一步改进类边界(也就是改进簇的规则)。

4、主动学习:让用户在学习过程中扮演主动角色。

#要求用户(例如领域专家)对一个可能来自未标记的实例集或由学习程序合成的实例进行标记。

#特点:通过主动地从用户获取知识来提高模型质量。

#数据库系统因其在处理非常大的、相对结构化的数据集方面的高度可伸缩性而闻名。

#许多数据挖掘任务都需要处理大型数据集,甚至处理实时的快速流数据。因此,数据挖掘可以很好的利用可伸缩的数据库技术,一遍获得在大型数据集上的高效率和可伸缩性。

#数据挖掘任务可以用来扩充数据库系统,以便满足高端用户复杂的数据分析需求。

#新的数据库系统使用数据仓库和数据挖掘机制,已经在数据库的数据上建立了系统的数据分析能力。

#信息检索(IR):搜索文档或文档中信息的科学。

#文档可以是文本或多媒体,并且可能驻留在Web上。

#传统的信息检索与数据库系统之间的差别:

1、信息检索假定所搜索的数据是无结构的;

2、信息检索查询主要用关键词,没有复杂的机构(不同与数据库系统中的SQL查询)。

#信息检索的典型方法——概率模型。

#文档的语言模型:生成文档中词的包的概率密度函数,语言模型之间的相似性可以度量两个文档之间的相似度。

#一个文本文档集的主题可以用词汇表上的概率分布建模,称作主题模型。一个文本文档可以涉及多个主题,可以看做主题混合模型。

#通过集成信息检索模型和数据挖掘技术,可以找出文档集中的主要主题,对集合中的每个文档,找出所涉及的主要主题。

1、商务而言,理解顾客、市场、供应、资源、竞争对手等信息,是非常重要的。

2、商务智能中的联机处理工具依赖于数据仓库和多维数据挖掘。

3、分类和预测计算是商务智能预测分析的核心。。

1、Web搜索引擎本质上是大型数据挖掘应用。

2、通常,用户查询的搜索结果用一张表返给用户(有时称作采样(hit)),包含网页、图像和其它类型的文件。

3、搜索引擎不同于网络目录,网络目录由人工编辑管理,搜索引擎按算法运行,或者是算法和人工输入的混合。

4、搜索引擎对数据挖掘提出了巨大挑战,大量的并且不断增加的数据,需要数以万计的计算机组成计算机云,共同挖掘。

#数据挖掘方法应该考虑数据的不确定性、噪声、不完全性等问题。

1、挖掘各种新的知识类型

2、挖掘多维空间中的知识

#在不同抽象层的多维(属性)组合中搜索有趣的模式,称为探索式多维数据挖掘。

#在数据立方体中挖掘知识可以显著的提高数据挖掘的能力和灵活性。

3、数据挖掘——跨学科的努力

#通过集成来自多学科的新方法可以显著增强数据挖掘的能力。

4、提升网络环境下的发现能力

#大部分的数据对象驻留在连接或互连的环境中,无论是Web、数据库关系、文件还是文档。

#多个数据对象之间的语义链接可以用来促进数据的挖掘。

5、处理不确定性、噪声或不完全数据

#错误和噪声可能干扰数据挖掘过程,导致错误的模式出现。

#数据清理、数据预处理、离群点检测与删除、不确定性推理,都是需要与数据挖掘过程集成的技术。

6、模式评估和模式或约束指导的挖掘

#数据挖掘模式是否有趣,要根据用户来定。

#模式的价值是基于给定用户类、用户确信度或期望来定的。

#通过使用兴趣度度量或用户指定的约束指导发现过程,可以产生更有趣的模式,压缩搜素空间。

#挖掘过程需要思考的问题:

#如何与数据挖掘系统交互?

#如何在挖掘过程中融入用户的背景知识?

#如何可视化与理解数据挖掘的结果?

1、交互挖掘

#数据挖掘过程应该是高度交互的。

#构建灵活的用户界面和探索式挖掘环境,是非常重要的,以便用户与系统交互。

#交互式挖掘允许用户在挖掘过程中动态的改变搜索的聚焦点,根据返回的结果提炼挖掘请求,并在数据和知识空间交互的进行下钻、切块、旋转,动态的探索“立方体空间”。

2、结合背景知识

#应把背景知识、约束、规则和关于所研究领域的其他信息结合到挖掘过程中,这些知识可用于模式评估,指引搜索有趣的模式。

3、特定的数据挖掘和数据挖掘查询语言

#查询语言(如SQL)在灵活的搜索中扮演了重要的角色,因为它允许用户提出特定的查询。

4、数据挖掘结果的表示和可视化

#数据挖掘系统是交互的(如搜索引擎),这点极其重要,这要求系统采用有表达能力的知识表示,以及用户友好的界面和可视化技术。

1、数据挖掘算法的有效性和可伸缩性

#有效性、可伸缩性、性能、优化、实时运行能力,是驱动驱动数据挖掘算法开发的关键标准。

2、并行、分布式和增量挖掘算法

#算法特点:把数据划分成若干“片段”,每个片段并行处理,搜索模式。

#原因:数据集容量巨大、数据的广泛分布、一些数据挖掘算法的计算复杂性。(有些数据挖掘过程的高开销和输入的增量特点,推动了增量数据挖掘)

#增量挖掘与新的数据更新结合在一起,而不必“从头开始”挖掘全部数据。

#增量算法增量的进行知识修改,修正和加强先前业已发现的知识。

#并行处理可以交互(如多个刷选条件同时执行),来自每部分的模式最终合并在一起。

#云计算和集群计算,使用分布式和协同的计算机处理超大规模计算任务,是并行数据挖掘研究的活跃主题。

#数据库类型的多样性给挖掘任务带来了挑战:

1、处理复杂的数据类型

2、挖掘动态的、网络的、全球的数据库

#难点:众多数据源被国际互联网和各种网络连接在一起,形成了一个庞大的、分布的和异构的全球信息系统和网络,而且数据拥有结构化、半结构化和非结构化的不同数据语义。

#好处:与从孤立的数据库的小数据集中发现的知识相比,挖掘庞大的、互连的信息网络可能帮助在异种数据集中发现更多的模式和知识。

1)需求是发明之母。

2)数据挖掘是从海量的数据中发现有趣模式的过程。

#作为知识发现过程,数据挖掘通常包括:数据清理、数据集成、数据选择、数据变换、模式发现、模式评估、知识表示。

3)有趣的模式

#有趣的模式:如果一种模式在某种确信度上对于检验数据是有效的、新颖的、潜在有用的,并且易于被人理解的。

#有趣的模式代表知识。

#模式兴趣度度量,无论是客观的还是主观的,都可以用来指导发现过程。

4)数据挖掘的多维视图

#维:指数据、知识、技术、应用。

5)只要数据对目标应用有意义,数据挖掘可以在任何类型的数据上进行。

6)数据仓库

#数据仓库中的数据,来自多个数据源,在一种同一的模式下存放,并且通常是汇总的。

#数据仓库提供一些数据分析能力,称作联机分析处理。

7)多维数据挖掘

#多维数据挖掘(又称探索式多维数据挖掘):把数据挖掘的核心技术与基于OLAP的多维分析结合在一起。在不同的抽象层的多维(属性)组合中搜索有趣的模式,从而探索多维空间。

8)数据挖掘功能

9)数据挖掘研究

#研究领域:挖掘方法、用户交互、有效性和可伸缩性、处理多种多样的数据类型。

THE END
1.数据挖掘师在市场中的地位与未来的展望随着大数据技术的飞速发展,数据挖掘这一领域也迎来了前所未有的爆炸性增长。作为一名专业的数据分析人员,数据挖掘师不仅需要具备深厚的数学和统计学知识,还要有强大的编程能力以及对业务模式的深刻理解。在这个信息爆炸时代,能够从海量数据中提取有价值信息的人才是最宝贵的。 https://www.f3kg3td6j.cn/jun-lei-zi-xun/496259.html
2.数据挖掘类文章属于什么类型mob64ca12e83232的技术博客数据挖掘是一种从大量数据中提取隐含的、有用信息和知识的过程。它涉及统计学、机器学习、数据库技术等多门学科,因此数据挖掘类文章通常属于数据分析、机器学习和统计学等类别。本文将介绍数据挖掘的基本概念,并结合具体的代码示例,展示如何使用Python进行简单的数据挖掘任务。 https://blog.51cto.com/u_16213397/12827058
3.C语言在数据挖掘中的作用编程语言C语言与其他数据挖掘语言的对比 Python:虽然Python在数据挖掘中更为流行,但C语言在性能和资源控制方面具有明显优势,适用于性能要求高、资源受限的场景。 R语言:R语言专为统计分析和数据可视化设计,而C语言则更侧重于底层控制和高效算法实现。 实际应用案例 金融领域:通过C语言实现高频交易算法,提高交易效率和盈利能力。https://m.yisu.com/zixun/942501.html
4.好书推荐《数据挖掘技巧》数据挖掘一般是从大量的数据中通过计算机算法,去搜索隐藏于其中信息的过程。用通俗的话说,就是面临大量的数据,使用数据挖掘工具“探勘”一遍之前,审计人员不一定有明确的目标,挖掘出来的结果也不一定在审计人员的预料之中。数据挖掘作为一种新的计算机审计方法,能够辅助审计人https://mp.weixin.qq.com/s?__biz=MzU0ODk2NjA0Nw==&mid=2247509056&idx=3&sn=efa3fad8b2f29bc4520c0acc7354b793&chksm=fbb5ffb0ccc276a6cbbf6d12458f702a0a731627617b65747658b89c3bbcd90cde9b3f9a9192&scene=27
5.机器学习:开启智能未来的钥匙腾讯云开发者社区边缘人工智能在边缘位置创建和处理数据具有诸多优势。首先,它能够提供实时决策能力。例如在自动驾驶汽车中,数据是实时捕获的,汽车以高速行驶,没有时间将数据发送到云端再返回决策,必须在边缘位置立即做出决定,确保乘客安全。其次,边缘人工智能在隐私和安全方面表现出色。数据在边缘本地处理,不需要通过网络移动,降低了被黑客https://cloud.tencent.com/developer/article/2478495
6.机器学习找不到创新点?三种特征选择的方法包你拿下顶会!文章介绍了一种新的特征选择框架shap-select,该框架通过在验证集上对目标变量与原始特征的SHAP值进行线性或逻辑回归,并根据回归系数的符号和显著性水平来实现高效的特征选择。在Kaggle信用卡欺诈数据集上的评估表明,shap-select在解释性、计算效率和性能方面均表现出色。 https://www.bilibili.com/read/cv40067807
7.什么是数据挖掘?数据挖掘具有哪些功能?数据挖掘是指从大量数据中提取隐含的、未知的、潜在的有用的信息,使其表现为概念、规则、规律、模式等形式。数据挖掘实质上是一个深层次的数据分析过程,即从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。 ( 1 )趋势和行为分析;( 2 )关联分析;( 3 )聚类分析;( 4 )概念描述;( 5 )偏差检测https://www.shuashuati.com/ti/b42dc41b1dec47e08e65ba734ea56cff.html
8.快递客服电话系统怎么样?具备哪些功能?(六)数据挖掘功能 通过对大量客户咨询数据的挖掘,可以分析出客户的需求趋势。例如,了解哪些地区对快递的需求量大、哪些时间段咨询量高,从而帮助快递公司合理安排人力、物力资源,优化快递服务的各个环节。同时也能发现客户常见的问题,以便快递公司优化服务流程或者对员工进行针对性培训。 https://www.jingxuanxing.com/article/dianping/25460.html
9.数据可视化有哪些功能4.比较数据; 5.突出重点; 6.决策支持; 7.呈现多维数据; 8.实时监控; 9.数据分享和传播; 10.可视化数据挖掘; 11.用户定制化; 12.多平台支持。数据可视化具有丰富的功能和优势,可以帮助人们更好地理解和分析数据,从而进行更准确和有效的决策和规划。 https://www.linkflowtech.com/news/3070
10.数据挖掘主要包含哪些功能?数据挖掘的功能数据挖掘主要包含哪些功能? 数据挖掘的功能主要包括,数据分类、数据估计、数据预测、数据关联分组、数据聚类,及数据循序样式采矿等六大功能。 数据分类 数据分类为数据挖掘中常见的功能之一,顾名思义即是将分析对象依不同的属性分类加以定义,建立不同的类组。数据挖掘中的分类是指针对未发生的结果进行预测分类,主要包括https://blog.csdn.net/duozhishidai/article/details/87968943
11.数据挖掘有哪些功能导读随着大数据发展越来越好,数据挖掘成为了未来发展的一大趋势,数据挖掘和分析技术在各行业发挥着重要作用,小编为大家整理了数据挖掘的具体功能介绍,一起来看看吧。 数据挖掘有哪些功能: 数据挖掘通过预测未来趋势及行为,做出前摄的、基于知识的决策。数据挖掘的目标是从数据库中发现隐含的、有意义的知识,主要有以下五https://www.baijiao.org/school/zhengzhouxinyingdajiaoyu/news/14499.html
12.数据挖掘论文数据挖掘技术具有的属性分析能力,可以将数据库中的信息进行分门别类,将信息的对象通过不同的特征,规划为不同的分类。将数据挖掘技术运用到档案管理中时,可以简单快速地找到想要的档案数据,能根据数据中使用者的相关数据,找寻使用者在数据库中的信息,使用数据模型的分析能力,分析出使用者的相关特征。利如,在使用者https://www.unjs.com/lunwen/f/20220924130749_5650839.html
13.版权立法中文本数据挖掘侵权例外规则的构建版权资讯一、文本数据挖掘的复合功能及其著作权侵权风险 TDM是数据库的伴生物,在信息时代具有多重应用价值,其本质是利用人工智能算法调取存储于数据库中的文本或各种智能设备产生的数据,通过比对或重组信息资源发现其隐含的模型、趋势或与某一设定目标的相关性。精心设计的TDM不但具有广泛的商业用途,也同样为非营利单位和人员节省http://www.ccct.net.cn/html/bqzx/2023/0601/4369.html
14.数据仓库和数据挖掘12篇(全文)数据仓库和数据挖掘 第1篇 在90年代初, 数据仓库这个概念第一次是由数据仓库支付提出的。一般一个面向集成、主题的, 随着时间变化并且信息本身能够相对稳定的数据集合就成为一个数据仓库, 它主要用于对管理决策过程的支持。 (一) 数据仓库的类型 根据数据仓库所管理的数据类型和它们所解决的企业问题范围, 数据仓库可https://www.99xueshu.com/w/ikeyy9nb2adc.html
15.急诊业务系统有哪些功能急诊科需要对患者的病情、治疗效果以及医疗资源的利用情况进行统计分析,以便及时发现并解决存在的问题。系统可以提供常规的统计分析功能,包括患者的年龄段、病种分布、病床使用率等等。 小标题二:数据挖掘分析 通过对急诊科的大量数据进行挖掘和分析,可以发现一些隐藏的规律和特征,为急救工作提供更加精准的指导和支持。系统https://h.chanjet.com/ask/c56fea98ed6b6.html
16.ai有什么功能AI,即人工智能,是一种广泛应用的科学技术,它具有许多功能,为人类带来了巨大的便利和进步。下面将详细介绍AI的主要功能。 1. 机器学习与数据挖掘 AI的核心功能之一是机器学习和数据挖掘。通过机器学习算法,AI可以自动学习并优化数据处理和分类,从而实现自动化决策和预测。此外,AI还可以从大量数据中提取有用信息,帮助人https://tool.a5.cn/article/show/78399.html
17.专业认知实习报告随着个人的文明素养不断提升,报告与我们愈发关系密切,不同种类的报告具有不同的用途。我们应当如何写报告呢?下面是小编整理的专业认知实习报告,仅供参考,大家一起来看看吧。 专业认知实习报告1 1.实习单位: 国家海产品质量监督检验中心(湛江) 2.实习地点: https://www.ruiwen.com/shixibaogao/8009542.html
18.wps可以实现哪些数据分析功能,可以实现一些数据挖掘功能吗wps可以实现哪些数据分析功能,可以实现一些数据挖掘功能吗 您好,WPS表格只支持单变量求解和规划求解功能,点击“数据--模拟分析”进入,楼主是需要数据分析的什么功能呢?https://www.wps.cn/learning/room/d/235592
19.物联网原理及应用期末复习免挂指南(大概率不直接考)二维码定义:二维条码/二维码是用某种特定的几何图形按一定规律在平面(二维方向上)分布的黑白相间的图形记录数据符号信息的; 二维码具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。 https://www.jianshu.com/p/33aa0cb1147c
20.网络营销全部(1)分析PT使用的移动大数据精准营销核心功能。①用户画像。PT与京东、天猎平台合作,分析网上用户行为,利用平台的数据挖掘、用户画像功能,发现对美发、护发有需求的女性潜在客户。②精准广告的投放及服务信息的推送。根据用户画像,将产品广告信息精准地推送到这些人群手机端;向进入PT线下产品体验点周围2公里的女性用户和https://www.wjx.cn/xz/261160017.aspx
21.年薪50万!北航合肥创新研究院招募研究员!澎湃号·政务2、负责利用大数据平台和工具,完成数据分析、数据挖掘、机器学习工作; 3、负责交通大数据平台搭建和使用; 4、负责对项目提供持续的优化; 5、完成软件系统代码的实现,编写代码注释和开发文档; 6、完成 Windows客户端软件界面开发; 7、辅助进行系统的功能定义,程序设计; https://www.thepaper.cn/newsDetail_forward_4985535
22.论油田物联网建设的作用和意义长庆油田的贡献,在于将原来大家单一油田网络工程和静态数据数字化入库建设的数字油田,扩展到油田井场、站、库、集输管网的数字化管理与油田井场、站、库、集输管网全面感知的数据采集与智能控制上,提出了“三端五系统三个辅助”的建设思想,从而把数字油田进行了功能上的扩展,更重要的是把一般概念意义上的数字油田实现https://doicu.chd.edu.cn/2017/1121/c2952a42024/page.htm
23.何谓数据挖掘?它有哪些方面的功能?何谓数据挖掘?它有哪些方面的功能?点击查看答案 你可能感兴趣的试题 第1题:最佳的公共关系状态是()A.高知名度、高美誉度B.高美誉度、低知名度C.低知名度、低美誉度D.低美誉度最佳的公共关系状态是()A.高知名度、高美誉度B.高美誉度、低知名度C.低知名度、低美誉度D.低美誉度、高知名度 答案解析与讨论https://www.netkao.com/shiti/825383/2520537goih8tt93u.html
24.数据挖掘有什么作用与意义帆软数字化转型知识库3、算法复杂性:数据挖掘算法的复杂性对计算资源和时间提出了较高的要求,特别是在大数据环境下,如何提高算法的效率是一个重要的挑战。 4、跨领域数据挖掘:随着数据来源的多样化,跨领域数据的挖掘变得越来越重要。如何将不同领域的数据整合在一起,进行综合分析,是一个具有挑战性的任务。 https://www.fanruan.com/blog/article/575539/
25.袁锋元宇宙空间著作权合理使用制度的困境与出路——以转换性使用正如在美国的“Hathi Trust案”与“谷歌图书馆案”中,谷歌公司均使用了文本数据挖掘技术,对原作进行完整的数字化复制和利用。但其提供的搜索和片段浏览功能是为了方便用户搜索其感兴趣的书籍,提高用户检索图书的效率,同时也利于保存古老文集,有助于学术研究,有益于社会公众,因而具有高度转换性而不构成侵权。也正是https://www.jfdaily.com/sgh/detail?id=662666