CDALEVELⅡ?数据分析师考试?纲

考试题型:客观题(单选+多选)+上机建模题

考试内容:第一阶段,90分钟,客观题(单选+多选),上机答题;第二阶段120分钟,案例操作,自行携带电脑操作,案例数据将统一提供CSV文件。

针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。

1.领会:考生能够领会了解规定的知识点,并能够了解规定知识点的内涵与外延,了解其内容要点和它们之间的区别与联系,并能做出正确的阐述、解释和说明。

a.大数据分析基础(1%)

b.Python基础(5%)

c.Linux&Ubuntu操作系统基础(2%)

a.Hadoop安装配置及运行机制解析(2%)

b.HDFS分布式文件系统(2%)

c.MapReduce理论及实战(2%)

d.Hadoop生态其他常用组件(6%)

a.数据库导论(2%)

b.MySQL理论及实战(3%)

c.HBase安装及使用(3%)

d.Hive安装及使用(5%)

e.Sqoop安装及使用(3%)

a.数据挖掘的基本思想(2%)

b.数据挖掘基本方法介绍(2%)

c.有监督学习算法(4%)

d.无监督学习算法(2%)

a.Spark基础理论(2%)

b.SparkRDD基本概念及常用操作(3%)

c.Spark流式计算框架SparkStreaming、StructuredStreaming(5%)

d.Spark交互式数据查询框架SparkSQL(5%)

e.Spark机器学习算法库SparkMLlib基本使用方法(15%)

f.Spark图计算框架GraphX(5%)

a.数据可视化入门基础(1%)

b.Python数据可视化入门(2%)

c.Python高级数据可视化方法(1%)

a.利用HDFSShell操作HDFS文件系统(1%)

b.利用HiveSQL进行数据清洗(2%)

c.利用Sqoop进行数据传输(1%)

d.利用SparkSQL进行数据读取(2%)

e.利用SparkMLlib进行机器学习建模(8%)

f.利用Python进行建模结果数据可视化(1%)

Hive中的数据库概念、修改数据库

创建表、管理表、外部表、分区表、删除表

Hive中的命令语句是类SQL语句

SELECT…FROM语句

使用列值进行计算、算术运算符、使用函数、列别名、嵌套SELECT语句、WHERE语句、groupby语句、集合运算、多表连接、内连接、外连接、笛卡尔积连接、orderby语句、抽样查询、视图。

Sqoop是一个数据转储工具,它能够将HadoopHDFS中的数据转储到关系型数据库中,也能将关系型数据库中的数据转储到HDFS中。

Sqoop链接数据库需要JDBC的支持

Sqoop的安装方法从HadoopHDFS向MySQL导入数据从MySQL向HadoopHDFS导入数据

说明:推荐学习书目中考生可根据自身需求选择性学习。参考书目不需全部学完,根据考纲知识点进行针对性学习即可。

THE END
1.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn“数据挖掘算法”是创建数据挖掘模型的机制。为了创建模型,算法将首先分析一组数据并查找特定模式和趋势。算法使用此分析的结果来定义挖掘模型的参数。然后,这些参数应用于整个数据集,以便提取可行模式和详细统计信息。 算法创建的挖掘模型可以采用多种形式,这包括: https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
2.数据挖掘和提取工具有哪些帆软数字化转型知识库数据挖掘和提取工具有很多种,包括RapidMiner、KNIME、Orange、Weka、SQL、Python(尤其是使用pandas、numpy、scikit-learn等库)、R语言(尤其是使用dplyr、ggplot2等包)、Tableau、Power BI、Apache Hadoop、Apache Spark等。这些工具各有特点,适用于不同的应用场景。其中,Python由于其开源、丰富的库和广泛的社区支持,被广https://www.fanruan.com/blog/article/589164/
3.数据挖掘数据挖掘csdn尽管数据仓库和操作型数据库有着不同的特点和应用场景,但它们通常是相互关联、相互支持的。数据仓库往往需要从操作型数据库中获取数据进行分析,而操作型数据库的设计和维护也可能受到数据仓库需求的影响。因此,它们在企业信息系统中通常是相辅相成的。 1.3数据仓库系统与系统及开发工具 https://blog.csdn.net/q12ERTYU/article/details/136547979
4.海量数据处理中数据挖掘技术及应用工具探析百客网导读:AI原创突出图片,仅为参考 海量数据处理中的数据挖掘技术与工具是现代信息技术领域的重要组成部分。随着大数据时代的到来,企业和组织每天都面临着处理和分析庞大数据集的挑战。数据挖掘技 AI原创突出图片,仅为参考 海量数据处理中的数据挖掘技术与工具是现代信息技术领域的重要组成部分。随着大数据时代的到来,企业和组https://www.yubaike.com.cn/html/shuju/2024-12-16/370030.html
5.好用的数据挖掘工具有哪些,数据挖掘怎么做,数据挖掘有什么?好用的数据挖掘工具有以下几种: 1. Python:Python是一种流行的编程语言,有丰富的数据挖掘库和工具包,如NumPy、Pandas、Scikit-learn、TensorFlow等。它提供了强大的数据处理和分析能力,适合各种数据挖掘任务。 2. R语言:R语言是专门用于统计分析和数据挖掘的编程语言,拥有广泛的统计https://localsite.baidu.com/article-detail.html?articleId=100058533&ucid=n1D4rHDvrjm&categoryLv1=%E6%95%99%E8%82%B2%E5%9F%B9%E8%AE%AD&ch=54&srcid=10007&contentFrom=3
6.数据挖掘各种工具介绍1a、通用型工具;b、综合/DSS/OLAP数据挖掘工具;c、快速发展的面向特定应用的工具。 通用型工具占有最大和最成熟的那部分市场。通用的数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型,其中包括的主要工具有IBM 公司Almaden 研究中心开发的QUEST 系统,SGI 公司开发的MineSet 系统,加拿大Simon Frahttps://bbs.pinggu.org/jg/shuju_shujuwajue_1281384_1.html
7.干货推荐19款最常用的数据挖掘工具腾讯云开发者社区Rattle代表R分析工具轻松学习。 它提供数据的统计和可视化汇总,将数据转换为可以轻松建模的表单,从数据中构建无监督模型和监督模型,以图形方式呈现模型的性能,并对新数据集进行评分。 它是一个使用Gnome图形界面在统计语言R编写的免费的开源数据挖掘工具包。 它运行在GNU /Linux,Macintosh OS X和MS /Windows下。 https://www.cloud.tencent.com/developer/article/1430977
8.开源专利分析工具有哪些(上)澎湃号·湃客澎湃新闻本文所介绍的工具可以分为八个种类:通用工具、数据清理工具、数据挖掘工具、数据可视化工具、网络数据可视化工具、信息图制作工具、地理数据可视化工具、文本挖掘工具。本文主要介绍前面四种,下期文章介绍后面四种。 有一些工具同时具有多种功能,所以这种工具可能会出现在上述两个以上的种类中。 https://www.thepaper.cn/newsDetail_forward_19053089
9.湖南省统计局一句话,只要用户不是很挑剔,基本上都可以在某一家那里即可买全包括数据挖掘工具在内的全套商业智能产品。而像SAS、SPSS、StatSoft等公司虽然也宣称提供工具平台,但提供“整车”的实力有限,主要在统计分析和数据挖掘领域延伸提供尽可能多的工具组件。 ? 相对于这些挖掘工具平台,专业挖掘工具可能在市场的声势并不大,http://tjj.hunan.gov.cn/hntj/bsfw/tjkp/tjsh/201507/t20150717_3825196.html
10.50个BA分析工具第二十一个DataMining(数据挖掘)知识卡片 工具名称:Data Mining(数据挖掘) 工具介绍:Data Mining最早是用在数据仓库中,而现在已经不局限于数据仓库了通过发现有用的模式和数据来提升我们的决策水平在过去的模式中,会把传统的数据库的数据通过etl或者elt汇总到数据仓库数据仓库的模型和数据库的模型是https://maimai.cn/article/detail?fid=1478662341&efid=JLgH4dfGCstru6TzScYN1A
11.数据挖掘算法与应用孙家泽课后答案langrisser的技术博客2.6 数据挖掘工具的现状 15 2.7 数据挖掘未来研究方向及热点 16 2.4.1 网站的数据挖掘 16 2.4.2 生物信息或基因数据挖掘 17 2.4.3 文本的数据挖掘 17 2.4.4 2005年十大热点问题 17 2.5 小结 18 第三章 关联规则 18 https://blog.51cto.com/u_12868/11951043
12.业务数据分析库有哪些系统数据挖掘工具用于发现数据中的隐藏模式和规律。这些工具可帮助企业进行数据分析并进行更好的商业决策。目前市场上比较常用的数据挖掘工具包括sas、spss、r语言等。 △某业某财产品截图 3. 商业智能系统 商业智能系统是一种集成了数据仓库、数据分析和数据挖掘功能的信息系统。通过商业智能系统,企业可以更直观地了解客户需https://h.chanjet.com/ask/3d8d1a710df0a.html
13.数据挖掘:实用机器学习工具与技术(原书第3版)中文/英文pdf完整版[138☉ 如果遇到什么问题,请评论留言,我们定会解决问题,谢谢大家支持! ☉ 本站提供的一些商业软件是供学习研究之用,如用于商业用途,请购买正版。 ☉ 本站提供的数据挖掘:实用机器学习工具与技术(原书第3版) 中文/英文pdf完整版[138MB]资源来源互联网,版权归该下载资源的合法拥有者所有。https://www.jb51.net/books/581148.html