人工智能机器学习深度学习的关系是什么常见问题

本教程操作环境:windows7系统、DellG3电脑。

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等。

人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也有可能超过人的智能。

数据挖掘(DataMining),顾名思义就是从海量数据中“挖掘”隐藏信息,按照教科书的说法,这里的数据是“大量的、不完全的、有噪声的、模糊的、随机的实际应用数据”,信息指的是“隐含的、规律性的、人们事先未知的、但又是潜在有用的并且最终可理解的信息和知识”。在商业环境中,企业希望让存放在数据库中的数据能“说话”,支持决策。所以,数据挖掘更偏向应用。

数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

机器学习(MachineLearning)是指用某些算法指导计算机利用已知数据得出适当的模型,并利用此模型对新的情境给出判断的过程。

机器学习的思想并不复杂,它仅仅是对人类生活中学习过程的一个模拟。而在这整个过程中,最关键的是数据。

深度学习(DeepLearning)的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

严格意义上说,人工智能和机器学习没有直接关系,只不过目前机器学习的方法被大量的应用于解决人工智能的问题而已。目前机器学习是人工智能的一种实现方式,也是最重要的实现方式。

早期的机器学习实际上是属于统计学,而非计算机科学的;而二十世纪九十年代之前的经典人工智能跟机器学习也没有关系。所以今天的AI和ML有很大的重叠,但并没有严格的从属关系。

不过如果仅就计算机系内部来说,ML是属于AI的。AI今天已经变成了一个很泛泛的学科了。

深度学习是机器学习现在比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。

所以,如果把人工智能与机器学习当成两个学科来看,三者关系如下图所示:

数据挖掘主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。

机器学习是数据挖掘的一种重要方法,但机器学习是另一门学科,并不从属于数据挖掘,二者相辅相成。

机器学习过程使用以下步骤进行定义:

2.选择要使用的算法类型。

3.根据所使用的算法构建分析模型。

4.立足测试数据集进行模型训练,并根据需要进行模型修改。

5.运行模型以生成测试评分。

机器学习与深度学习间的区别

1.数据量:

机器学习能够适应各种数据量,特别是数据量较小的场景。在另一方面,如果数据量迅速增加,那么深度学习的效果将更为突出。下图展示了不同数据量下机器学习与深度学习的效能水平。

2.硬件依赖性:

与传统机器学习算法相反,深度学习算法在设计上高度依赖于高端设备。深度学习算法需要执行大量矩阵乘法运算,因此需要充足的硬件资源作为支持。

3.特征工程:

特征工程是将特定领域知识放入指定特征的过程,旨在减少数据复杂性水平并生成可用于学习算法的模式。

示例:传统的机器学习模式专注于特征工程中所需要找像素及其他属性。深度学习算法则专注于数据的其他高级特征,因此能够降低处理每个新问题时特征提取器的实际工作量。

4.问题解决方法

传统机器学习算法遵循标准程序以解决问题。它将问题拆分成数个部分,对其进行分别解决,而后再将结果结合起来以获得所需的答案。深度学习则以集中方式解决问题,而无需进行问题拆分。

6.可解释性

可解释性是机器学习与深度学习算法间的主要区别之一——深度学习算法往往不具备可解释性。也正因为如此,业界在使用深度学习之前总会再三考量。

THE END
1.数据挖掘与机器学习——概念篇机器学习与数据挖掘概念回归分析包括:线性和非线性回归、一元和多元回归。常用的回归是一元线性回归和多元线性回归。 6. 聚类分析 聚类分析多用于人群分类,客户分类。所谓聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程。 五、数据挖掘流程 1.基本流程 2.数据处理 六、案例 —— 推荐算法https://blog.csdn.net/m0_63181360/article/details/138890384
2.数据挖掘数据量多少合适帆软数字化转型知识库数据挖掘数据量的合适程度取决于几个关键因素:目标问题的复杂性、数据的质量、计算资源的可用性、以及模型的复杂性。一般来说,为了确保数据挖掘结果的可靠性和有效性,数据量应足够大以捕捉数据中的模式和趋势。数据量越大,模型的泛化能力越强。举例来说,在处理图像分类任务时,需要数万甚至数百万张图像来训练深度学习https://www.fanruan.com/blog/article/581003/
3.数据量太少怎么做机器学习数据太少如何分析数据量太少怎么做机器学习 数据太少如何分析,没有高质量的数据,就没有高质量的数据挖掘结果,数据值缺失是数据分析中经常遇到的问题之一。当缺失比例很小时,可直接对缺失记录进行舍弃或进行手工处理。但在实际数据中,往往缺失数据占有相当的比重。这时如果手工处理非常https://blog.51cto.com/u_16213565/8785831
4.直播回顾单细胞测序:从样本制备到数据挖掘的全流程探讨10. 请问老师测序的数据量和捕获细胞数对数据的结果影响大吗? 答:不同的测序深度,在达到饱和之前,获得基因中位数据和细胞数量相差比较大,基因中位数不同的组织样本的标准差别较大,一般应该大于1000;捕获的细胞数量对不同研究需求有一定的影响,如一些稀有细胞群的鉴定可能会受影响。 https://www.yiqi.com/news/detail_23958.html
5.数据挖掘算法(logistic回归,随机森林,GBDT和xgboost)第一,从原始的数据集中采取有放回的抽样,构造子数据集,子数据集的数据量是和原始数据集相同的。不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复。 第二,利用子数据集来构建子决策树,将这个数据放到每个子决策树中,每个子决策树输出一个结果。最后,如果有了新的数据需要通过随机森林得到分类结果https://cloud.tencent.com/developer/article/1061147
6.三级数据库技术概念2知识发现过程由三个阶段组成:数据准备、数据挖掘、结果的解释评估。 数据仓库是面向主题的、集成的、不可更新的、随时间不断变化的数据的集合。 数据从操作型环境转移到数据仓库过程中所用到ETL(Extract-Transform-Load)工具通常需要完成的处理操作包括抽取、转换和装载。 https://www.jianshu.com/p/32815082fdb3
7.用户画像应该怎么做数据是零散的,或者是表面的,用户画像要对收集到的数据做整理,比较常用的是通过数据建模的方式做归类创建。小圆接触过的大多是比较初级的用户画像,通过excel工具就可以基本完成整合。而对于技术工具层面的数据建模,感兴趣的可以看推文的第二条。 在数据量不大,用户画像比较初级的情况下,通过筛选、归类、整合的过程对用https://www.linkflowtech.com/news/153
8.2020年最值得收藏的60个AI开源工具语言&开发李冬梅LazyNLP 的使用门槛很低——用户可以使用它爬网页、清洗数据或创建海量单语数据集。 据开发者称,LazyNLP 可以让你创建出大于 40G 的文本数据集,比 OpenAI 训练 GPT-2 时使用的数据集还要大。 项目地址:https://github.com/chiphuyen/lazynlp Subsync 自动将视频与字幕同步 https://www.infoq.cn/article/2uabiqaxicqifhqikeqw
9.易撰专注新媒体数据挖掘分析服务易撰自媒体工具,基于数据挖掘技术把各大自媒体平台内容进行整合分析,为自媒体作者提供在运营过程中需要用到的实时热点追踪,爆文素材,视频素材微信文章编辑器排版,标题生成及原创度检测等服务.https://www.yizhuan5.com/customService/