12款最好用的数据挖掘工具

开通VIP,畅享免费电子书等14项超值服

首页

好书

留言交流

下载APP

联系客服

2022.11.30广东

数据在当今世界意味着金钱。随着向基于app的世界的过渡,数据呈指数增长。然而,大多数数据是非结构化的,因此需要一个过程和方法从数据中提取有用的信息,并将其转换为可理解的和可用的形式。

数据挖掘或“数据库中的知识发现”是通过人工智能、机器学习、统计和数据库系统发现大数据集中的模式的过程。

免费的数据挖掘工具包括从完整的模型开发环境如Knime和Orange,到各种用Java、c++编写的库,最常见的是Python。数据挖掘中通常涉及到四种任务:

分类:将熟悉的结构概括为新数据的任务

聚类:在数据中以某种方式查找组和结构的任务,而不需要在数据中使用已注意的结构。

关联规则学习:查找变量之间的关系

回归:旨在找到一个函数,用最小的错误来模拟数据。

下面列出了用于数据挖掘的软件工具

数据挖掘工具

1.RapidMiner

RapidMiner,原名YALE又一个学习环境,是一个用于机器学习和数据挖掘实验的环境,用于研究和实际的数据挖掘任务。毫无疑问,这是世界领先的数据挖掘开源系统。该工具以Java编程语言编写,通过基于模板的框架提供高级分析。

它使得实验可以由大量的可任意嵌套的操作符组成,这些操作符在XML文件中是详细的,并且是由快速的Miner的图形用户界面完成的。最好的是用户不需要编写代码。它已经有许多模板和其他工具,让我们可以轻松地分析数据。

2.IBMSPSSModeler

IBMSPSSModeler工具工作台最适合处理文本分析等大型项目,其可视化界面非常有价值。它允许您在不编程的情况下生成各种数据挖掘算法。它也可以用于异常检测、贝叶斯网络、CARMA、Cox回归以及使用多层感知器进行反向传播学习的基本神经网络。

3.OracleDataMining

Oracle。作为“高级分析数据库”选项的一部分,Oracle数据挖掘功能允许其用户发现洞察力,进行预测并利用其Oracle数据。您可以构建模型来发现客户行为目标客户和开发概要文件。

OracleDataMinerGUI使数据分析师、业务分析师和数据科学家能够使用相当优雅的拖放解决方案处理数据库内的数据。它还可以为整个企业的自动化、调度和部署创建SQL和PL/SQL脚本。

4.Teradata

Teradata认识到,尽管大数据是令人敬畏的,但如果您实际上并不知道如何分析和使用它,那么它是毫无价值的。想象一下,有数百万的数据点没有查询的技能。这就是Teradata所提供的。它们提供数据仓库,大数据和分析以及市场营销应用程序方面的端到端解决方案和服务。

Teradata还提供一系列的服务,包括实施,业务咨询,培训和支持。

5.SmartbiMining

SmartbiMining通过深度数据建模,为企业提供预测能力,支持多种高效实用的机器学习算法,包含了分类、回归、聚类、预测、关联,5大类机器学习的成熟算法。其中包含了多种可训练的模型:逻辑回归、决策树、随机森林、朴素贝叶斯、支持向量机、线性回归、K均值、DBSCAN、高斯混合模型。除提供主要算法和建模功能外,SmartbiMining数据挖掘平台还提供了必不可少的数据预处理功能,包括字段拆分、行过滤与映射、列选择、随机采样、过滤空值、合并列、合并行、JOIN、行选择、去除重复值、排序、增加序列号、增加计算字段等。

6.FramedData

这是一个完全管理的解决方案,这意味着你不需要做任何事情,而是坐下来等待见解。框架数据从企业获取数据,并将其转化为可行的见解和决策。他们在云中训练、优化和存储产品的电离模型,并通过API提供预测,消除基础架构开销。他们提供了仪表板和情景分析工具,告诉你哪些公司杠杆是驾驶你关心的指标。

7.Kaggle

Kaggle是全球最大的数据科学社区。公司和研究人员张贴他们的数据,来自世界各地的统计人员和数据挖掘者竞相制作最好的模型。Kaggle是数据科学竞赛的平台。它帮助您解决难题,招募强大的团队,并扩大您的数据科学人才的力量。

8.Rattle

Rattle代表R分析工具轻松学习。它提供数据的统计和可视化汇总,将数据转换为可以轻松建模的表单,从数据中构建无监督模型和监督模型,以图形方式呈现模型的性能,并对新数据集进行评分。

它是一个使用Gnome图形界面在统计语言R编写的免费的开源数据挖掘工具包。它运行在GNU/Linux,MacintoshOSX和MS/Windows下。

9.KNIME

Konstanz信息采集器是一个用户友好、可理解、全面的开源数据集成、处理、分析和探索平台。它有一个图形用户界面,帮助用户方便地连接节点进行数据处理。

KNIME还通过模块化的数据流水线概念集成了机器学习和数据挖掘的各种组件,并引起了商业智能和财务数据分析的注意。

10.Python

作为一种免费且开放源代码的语言,Python通常与R进行比较,以方便使用。与R不同的是,Python的学习曲线往往很短,因此成了传奇。许多用户发现,他们可以开始构建数据集,并在几分钟内完成极其复杂的亲和力分析。只要您熟悉变量、数据类型、函数、条件和循环等基本编程概念,最常见的业务用例数据可视化就很简单。

11.Orange

Orange是一个以Python语言编写的基于组件的数据挖掘和机器学习软件套件。它是一个开放源码的数据可视化和分析的新手和专家。数据挖掘可以通过可视化编程或Python脚本进行。它还包含了数据分析、不同的可视化、从散点图、条形图、树、到树图、网络和热图的特征。

12.SASDataMining

使用SASDataMining商业软件发现数据集模式。其描述性和预测性建模提供了更好的理解数据的见解。他们提供了一个易于使用的GUI。他们拥有自动化的数据处理工具,集群到最终可以找到正确决策的最佳结果。作为一个商业软件,它还包括可升级处理、自动化、强化算法、建模、数据可视化和勘探等先进工具。

THE END
1.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn数据挖掘中的功能选择 缺少值(Analysis Services – 数据挖掘) 嵌套表(Analysis Services – 数据挖掘) Learn 早期版本 SQL SQL Server 2008 逻辑体系结构(Analysis Services - 数据挖掘) 使用英语阅读 保存 添加到集合 添加到计划 通过 Facebookx.com 共享LinkedIn电子邮件 https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
2.16种数据挖掘技术尽管神经网络可以是数据挖掘中的强大工具,但组织在使用它时应该谨慎:其中一些神经网络模型非常复杂,这使得很难理解神经网络如何确定输出。14.数据仓库 数据仓库是数据挖掘过程的重要组成部分。传统上,数据仓库涉及将结构化数据存储在关系数据库管理系统中,以便对其进行商业智能、报告和基本仪表板功能的分析。今天,在半https://baijiahao.baidu.com/s?id=1786242884956031097&wfr=spider&for=pc
3.数据挖掘的工具与软件SAS:SAS是一种商业软件,提供了强大的数据分析、数据可视化和机器学习功能。 KNIME:KNIME是一个开源的数据挖掘工具,可以用于数据预处理、数据分析、机器学习等。 Weka:Weka是一个开源的机器学习软件,提供了许多常用的机器学习算法。 在接下来的部分中,我们将详细介绍这些工具和软件的核心概念、算法原理、具体操作步骤和https://blog.csdn.net/universsky2015/article/details/135803268
4.数据挖掘用哪些工具做帆软数字化转型知识库R是一种专门用于统计分析和数据可视化的编程语言。它提供了丰富的数据挖掘工具和包,如 dplyr、tidyr 和 ggplot2。R 的强大之处在于其统计功能和可视化能力,使得数据分析和结果展示变得更加直观。R 也支持各种数据格式,如 CSV、Excel 和 SQL 数据库,可以方便地进行数据导入和导出。其社区活跃,拥有大量的开源资源和文https://www.fanruan.com/blog/article/576876/
5.3款好用的数据挖掘工具功能分析,你pick款?一般来说,思迈特软件Smartbi是一种非常实用的数据挖掘工具。 二、Oracle 该数据挖掘工具提供了优秀的数据预测算法,可用于分类、回归、聚类、关联、属性重要性判断等专业分析。Oracle数据挖掘功能允许用户发现洞察力、预测和使用Oracle数据,并构建模型来发现客户行为目标客户和开发总结文件。此外,还可以使用SQL.PL/SQL.R和https://www.jianshu.com/p/4cd84141e377
6.常用的数据挖掘软件有哪些常用数据挖掘工具通用数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。 1.2 专用数据挖掘工具 针对某个特定领域的问题提供解决方案,在设计算法的时候充分考虑了数据、需求的特性。 2 数据挖掘工具选择 2.1 数据挖掘工具选择参考指标 功能性:一个好的数据挖掘工具应该能够为每个步骤体哦那个相应的功能集; https://blog.51cto.com/u_13446/9407416
7.2024在市场规模方面,全球数据挖掘工具市场近年来保持了稳步增长的态势。这主要得益于大数据技术的不断突破和应用场景的持续拓展。随着数据的爆炸式增长,企业对于数据挖掘工具的需求也日益增加,推动了市场的快速发展。同时,随着云计算、人工智能等技术的不断融合,数据挖掘工具的功能和性能也得到了显著提升,进一步扩大了市场规模https://m.book118.com/html/2024/1219/7032042065010011.shtm
8.数据挖掘工具有哪些数据挖掘软件排名R软件是另一种较为流行的GNU开源数据挖掘工具,它主要是由C语言和FORTRAN语言编写的,是一款针对编程语言和软件环境进行统计计算和制图的免费软件。 除了可以为科学家、研究人员以及学生提供数据挖掘和分析功能外,它还可以提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收集等等。 https://m.elecfans.com/article/609515.html
9.最好用的采集数据挖掘工具软件熊猫采集工具软件介绍及下载最好用的采集数据挖掘工具软件-熊猫采集工具软件介绍及下载 人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。 经管之家是国内活跃的在线教育咨询平台! 经管之家新媒体交易平台 https://bbs.pinggu.org/jg/kaoyankaobo_kaoyan_1540678_1.html
10.易撰:高效写作工具助力内容创作,媒体人士必备的干嘛用功能解析易撰是一款基于数据挖掘技术的自媒体工具,它整合了各大自媒体平台的内容,为自媒体作者提供实时热点追踪、爆文素材、视频素材以及微信文章编辑器排版等功能。易撰团队持续对产品实优化和更新不断改进算法,升级客户体验,旨在助力自媒体人士高效运营。 二、易撰的核心功能解析 https://www.yanggu.tv/webgov/aixuexi/235066.html
11.友情链接检测结果十亿级数据支持,为您提供更方便的数据挖掘功能 进入API接口 更多工具 站长的必备工具,用户可以通过权重查询、收录查询、反链查询、死链检测、关键词挖掘、网站速度测试等工具,全面了解网站表现和优化方向。 综合查询 网站SEO综合诊断工具 百度权重 百度关键词排名分析 https://linkche.aizhan.com/
12.数据分析中的数据挖掘需要哪些工具数据分析中的数据挖掘需要以下工具:一、数据库管理工具;二、ETL工具;三、数据可视化工具;四、统计分析工具;五、机器学习工具;六、自然语言处理工具;七、大数据处理工具;八、Web爬虫工具;九、时间序列分析工具;十、图像处理工具;十一、数据挖掘工具。 一、数据库管理工具 https://www.linkflowtech.com/news/1596
13.教育信息化2.0视域下的“互联网+教育”要素与功能研究文章提出了“互联网+教育”的五个核心要素:学习资源、学习方式、师生关系、教学环境和管理模式;从“互联网+”对教育的重构和对教育信息化2.0的支撑两个方面讨论了“互联网+教育”的功能。文章认为,“互联网+教育”从思想源泉、创新工具和变革途径三个方面对教育信息化2.0起重大支撑作用。http://epc.swu.edu.cn/info/1129/3278.htm