提升大数据数据分析性能的方法及技术(一)csbdong

随着因特网在全球范围的普及,数据量变的如此的巨大,以至于使用现有的数据管理方法或者传统的数据处理应用很难应付。上述所提到的大规模、大体量的数据集我们就称之为大数据。

大数据就是一类复杂且庞大的数据集合,传统的数据管理工具或者应用已经无法胜任其数据的处理工作。数据之所以会大规模的增长[1],其中一个原因就在于通过对一些具有单一关联的大型数据集的分析,产生的额外的信息资源。这些通过分析产生的信息资源利用的案例可以在“景点的商业发展趋势的预测”、“研究成果质量的预测”、“疾病的预防”、“打击犯罪”和“预测实时交通拥塞程度”等场景下看到。

大数据通常是和云计算、数据挖掘、机器学习密不可分的。大数据的分析主要涉及到以下的四个方面[2]:数据管理和结构支撑、开发模型和评测、可视化和用户接口、商业模型。

图1[2]显示了传统的大数据工作流分析经历的一些阶段。数据以数据库,数据流,数据集合以及数据仓库等方式来建模。数据的数量级以及数据的多样性要求在处理之前要进行数据的集成、清洗以及过滤等工作,以保证其后续工作的开展。数据分析过程中最耗时、耗力的就是[2]数据的准备阶段。通常会遇到的一个问题就是需要分析的数据会使得现有的分析系统达到饱和。因此,分析大规模的数据时必须考虑到数据存储、过滤、移植和检索的效率。

分析处理这些大数据之所以面临挑战的另一个原因是[2]数据形式的多样性。正如图2所示,数据主要有四种形式。而如今大部分的数据,既不是结构化的数据,也不是半结构化的数据。

大数据已经成为一个炙手可热的话题,但是不可否认,大数据仍然面临一系列的挑战。尤其是现阶段广泛使用的流数据(下面会重点讨论)。

数据的多样性[2]:如何去应对始终呈增长趋势的数据。尤其是当数据以非结构化的形式产生的时候,如何从大量该类型的数据中快速有效的读取出用户所需要的数据。如何从流式数据中聚集并读取数据中的潜在关联性。

数据的存储:如何从非结构化的数据中快速提取并存储重要的信息?如何优化存储的结构,使得存储在其中的数据能够被高效率的检索?现存的文件系统能否有效的满足大数据分析所要求的性能?

数据处理和资源管理:需要设计出应用于流式数据的最优模型。需要设计出协同文件系统达到最高效能的处理引擎。

传统的数据处理的方法[3],对于那些建立在特定数据集上的离线的数据,以及批量到达的数据显得相对有效。但是随着时代的发展和处理任务的更迭,有时候,我们的任务所处理的对象是流式数据,或者在线的实时产生的数据。越来越多的实时应用程序需要动态的处理基于流式数据的一些查询请求。若在这样的请求中,在运用传统的方法,那么无论是对于空间占用还是效率来说,可能花销都是比较大的。现在先对流式数据的一些概念加以阐释。下述内容主要也将针对流式数据展开。

为了能够在数据仓库中提取出一些新的潜在信息,我们已经掌握了一些系列数据挖掘的技术。但是[4]如今,当我们试图从大量的流式数据中以一种合适、高效的方法来提取我们所需要的信息时,出现了一系列的挑战。

表1[3]列出了大数据(包括流式数据、批量数据等形式)处理所需要的工具集,包括大数据处理的所需要的库、平台和框架引擎。

工具集

处理对象

匹配引擎

Mahout

Batch

MapReduce,Spark,H2O

MLlib

Batch,Streaming

Spark

H2O

SAMOA

Streaming

Storm,Samza,S4

表1大数据处理工具集

MLlib[3]是一个与Spark几乎同时段出现的产物,MLlib是一个机器学习的库文件。其作为一款常驻内存的分布式处理引擎,广受欢迎并且被许多大数据应用程序所使用。MLlib兼容批量数据和流式数据。MLlib的设计初衷就是为了使用户能够在利用该库的基础上创建自己的算法。Spark.ml提供了一系列统一的接口与MLlib合作创建、扩展以及应用一些机器学习的算法。MLlib支持很多有助于数据处理和模型评估的数学和统计学方法。现在很多的模型都很好的使用了MLlib库,包括分类模型、迭代模型、评价模型、集群以及降维等。

我们既可以将SAMOA看作是一个框架也可以将其看作是一个库(跟上面提到的MLlib类似)。

作为框架,它允许算法的开发人员从底层的硬件设备中抽象,达到代码重用的目的。上文提到,它的优势[5]在于提供了能用在多种分布式系统上的接口,并适配多种流式处理引擎。通过设计了一个基于现代DSPE必要元素的最小化的应用程序接口API。这些接口使得可以很方便的将其绑定到新的引擎上面。SAMOA通过API和部署的方式,隐藏了DSPE的底部细节和底层差异。

图5和图6具体给出了SAMOA的项目架构。作为库,SAMOA包含了为在分布式机器上进行流式数据机器学习所设计的算法的实现。为“分类”这一步的操作,提供了VerticalHoeffdingTree(VHT)算法,对于集群,其包含了基于CluStream的算法。

Samoa平台在科学研究和实际生产生活的部署中都占有一席之地。

在SAMOA中,算法[5]被看作有向图上的节点进行消息传递的,这些节点之间通过数据流的形式传递消息。在图7表示的有向图拓扑中,每个节点都是一个通过流来发送和接收消息的处理器。每一个处理机都是节点执行算法的载体[7]。一个数据流可以有一个源节点,但是可以有多个目的节点(类似于PUB/SUB模型)有向图的拓扑是通过一个拓扑建立器的工具来生成的,它连接各部分用户的代码到SAMOA平台上,并且在后台做相应的处理和备份工作。图8则是从集群角度来描述了对应的算法架构。

流式处理平台[8]使得应用程序能够对源源不断进入系统的数据进行分析和处理。现实生活中有许多借助于流式大数据来实现其系统目标的案例。例如,在医院系统中,我们可以通过检测病人的生理构造的变化情况,来预测是否应该为病人进行实时的生命体征状态监控。这些功能的实现都离不开数据框架的支持,下面将对流式数据中采用的主流框架进行分析,并在某些性能方面与应用于其他数据结构的框架进行对比。

如果[9]只能用一句话来形容storm或者来介绍storm,那么用“分布式实时计算系统”来概括则再好不过了。Storm是一个开源的实时计算系统,它提供了一系列的基本元素用于进行计算。

ApacheStorm[10]是一款免费的开源分布式实时计算系统。Storm能够可靠的处理大量的流式数据。现在Storm所做的工作,好比就是Hadoop在批处理数据阶段所做的工作。Storm简单易用,可以兼容任何的编程语言。Storm是一个由一系列用户所编写的消息和应用程序代码所组成的平台。Storm中非常重要的一个概念就是“流”。所谓的“流”就是许许多多无界的数据的元组组成的序列。用户可以通过使用Storm提供的两个概念(spout、bolt),将一组已经存在的流(例如:twitter的消息)传递到新的流(例如:趋势信息)中去。spout和bolt都提供了接口,用户必须实现这些接口来完成自己的逻辑功能的实现。

在图4关于SAMOA中已经接触到了storm数据流,现在对图9的数据流加以分析。

对于bolt来说,它将接收多个输入流,然后做一些处理工作,并且可能产生一组新的流式数据。一些复杂的流式数据的传递处理过程可能会经历多步骤并且需要不止一个bolt的配合才能够完成。通过将一个大的任务分散成若干个小的任务块,每个bolt可以集中处理单个相对规模较小的任务,从而也会产生较快的响应。使用多个bolt也可以同时带来较高的性能,因为storm可以提供多个源数据给bolt处理以加快其处理的进程和处理的效率。

Spout和bolt都被打包成Topology[8]。Topology就是用户提交给storm执行的一个操作单元。为了能够在storm上面进行实时的计算,首先要创建topology。这个topology就是一个计算图。在其中,每个节点不是bolt就是spout,这些节点都包含了一个逻辑处理,并且图中的箭头表示了数据是如何在不同的节点之间流动的。节点之间的操作都是并发进行的。直到用户主动去终止一个拓扑或者出现崩溃,否则拓扑会一直在运行。当然,如果系统检测到某个spout或者bolt崩溃,那么会结束这单个的spout或者bolt。

结合上述storm中一个拓扑topology的组成部分,图10给出了strom中的一些角色关系。

表2列出了Hadoop与Strom中角色关系的对比。

Hadoop

Storm

系统角色

JobTracker

Nimbus

TaskTracker

Supervisor

Child

Worker

应用名称

Job

Topology

组件接口

Mapper/Reducer

Spout/Bolt

表2Hadoop与Storm系统角色对比

Hadoop主要是针对于批量数据的大数据处理框架,虽然针对目标不同,但是通过对比还是能轻易的得出Storm各部分角色在框架中所起的作用。

Nimbus:任务调度和资源分配。

Supervisor:接受任务,启动和停止属于自己管理的worker进程。

Worker:运行具体处理组件逻辑的进程。

Task:worker中每一个spout/bolt的线程称为一个task。在storm0.8之后,task不再与物理线程对应,同一个spout/bolt的task可能会共享一个物理线程,该线程称为executor。

4.1.3节中,我们会结合于上面的表格针对Strom具体说明不同的节点运行的角色以及它们是如何相互配合的。

在一个Storm集群中主要有两种类型的节点[8]。主节点和处理节点。

主节点运行一个称之为Nimbus的进程。其负责在集群中部署代码、分派任务、监视任务的进展情况以及回报崩溃的情况。它也同时运行一个UI进程。UI即用户界面,它提供了一个网站给用户以实时观测集群的状态以及管理拓扑和拓扑上的节点。在目前的Storm版本中,会有这样的情况出现:即当主节点崩溃后,处理节点仍然在工作,但是重新配置集群等操作在此期间就是无法进行了,除非我们去重启主节点。也许未来的Strom版本会对这一问题进行改进。

进程节点,运行一个称之为Supervisor的进程。这个Supervisor一直在监听者分派给这台机器的任务。它根据需求动态的开始和停止工作。这个需求是基于主节点分派给这台机器的任务。在一个进程节点中的若干个任务,都执行一系列的拓扑。例如一个或多个spout和bolt、metrics。鉴于此情况。一个拓扑topology很可能是分布在一个集群的若干个机器之间。进程节点同样也运行一个LogViewer进程,该进程可以用来查看网站上的浏览日志。

主节点与进程节点之间的协同工作是通过Zookeeper集群来完成的。在Zookeeper中可以存储和检索有关分配任务情况、进程处理健康状态以及集群的状态。

用户需要手动的将应用程序的代码打包成jar包,并且传递给主节点。将jar包分派给进程节点的工作进程是通过进程节点和主节点之间的直连网络来实现的。图11就展现了Storm架构的主要组成部分。

通常当需要较高的执行性能时,可以通过strom向集群里增加一些节点,同理当不需要的时候,可以实时的移走这些多余的节点,从而达到动态处理的效果。一言以蔽之,Strom赋予用户往平台上增加节点的功能。

在自动化计算领域,我们最常见的就是使用监控、分析、计划、执行(MAPE)这样一个循环往复的过程来控制一个系统。通过上述的循环过程使得Strom变得灵活而且可扩展。例如:Strom集群规模的增长和收缩都是基于拓扑结构的需要。首先用传感器来检测Storm集群的工作状态。MAPE的环路然后监测传感器的输出,分析数据的内容查处问题所在,然后找出补救的措施,执行新的选择算法。这个过程最终以动态修改集群的原有配置(通过Effector实现),使其适应新环境下的新需求而结束。图12给出了MAPE的执行流程。

监测:监测一个Storm集群系统可以作用于多个层面。进程节点将提供系统级的信息,包括处理器的使用情况、内存的使用、磁盘使用和网络接口状况。平台自身也是一个数据监测源。Storm本身也提供平台状况信息,包含正在工作的节点的数量和状态、拓扑以及元组数。最后,监测的数据也可以用应用层面提供。例如,一个拓扑检查自动计算系统的日志文件可以汇报其冲突率。监控输出的结果集是一个metrics。

分析:分析阶段通过查验一系列的metrics,来给出结论,判断是否当前的状态是正常的。例如:判断过去5分钟内处理器的平均占用率是否低于百分之七十?当然,其他的复杂的运算情形也是需要考虑在内的,包括结合平台状况、系统性能来分析metrics。在Storm集群中分析阶段需要给出的结论是当前的状态是(1)良好的(2)需要新的进程节点(3)存在过多的进程节点等等。

计划:当前面的分析阶段给出的结论是现在Storm集群存在问题时,必须在计划阶段给出处理的办法。如果需要一个进程节点,那么计划阶段就会立即告知执行阶段此请求,并且要求提供一个已经装有Storm的虚拟机。但是及时加入了新的节点,当前的执行任务不会重新被分配执行,这种情况下,拓扑就不是最优化的。只有当上一个分析阶段指出之一状况时,计划阶段会通知执行阶段重新分派任务,这样,刚刚被加进来的节点就能被利用了。如果当前的进程节点过多,就会销毁一部分。

Spark[11]是一个高速、通用的集群计算系统。它为Java、Scala、Python以及R语言都提供了应用程序接口。它也是最佳的支持通用执行图的引擎。不仅如此,Spark也提供了非常丰富的插件工具,其中包括为SQL设计的SparkSQL、结构化的数据处理工具、机器学习库MLlib、图像处理工具GraphX和SparkStreaming。

Spark的架构图如图13[12]所示。

下面将对几个重要的概念进行说明:

MLlib:在3.1节已经讲到,此处不再赘述。

SparkSQL:SparkSQL是一个Spark为结构化处理所设计的模块。它提供了一个编程的抽象叫DataFrames[13]。当然也可以作为分布式的SQL查询引擎。SparkSQL也可以从已存在的Hive中读取数据。DataFrames则是以列形式组织起来的分布式的数据集。在概念它等同于关系数据库中的一张表或者R/Python语言中的数据框架,但是它又比前者的性能优越。我们可以从几个方面来构造DataFrames:结构化的数据文件、Hive表格、已存在的数据库或者已存在的RDD。DataFrames的API兼容Scala、java、Python和R语言。

GraphX:GraphX是Spark中的一个新的组成部分。可以用于图像和并行图像的计算,同时通过引入了新的图像抽象技术:带权有向图,扩充了RDD。为了支持图像处理,GraphX提出了一系列基本的操作符和API。同时Graphx也在不断的扩充自己的算法库以便不断的简化图像处理的过程。

Spark借助于自身的SparkStreaming,提供了数据流处理的功能。结合图14,下面具体分析其计算流程、实时性等评价参数。

实时性:实时性不能一概而论,具体的处理框架所涉及的不同应用场合会带来不同的效果。SparkStreaming将流式计算分解成多个Job,对于每一段数据的处理都会经过有向无环图分解,并给予对应的任务集的调度。就当前的Streaming版本来说,最小的BatchSize的选取在0.5~2秒钟之间(Storm目前最小的延迟是100ms左右),所以SparkStreaming能够满足除对实时性要求非常高(如高频实时交易)之外的所有流式准实时计算场景。

RDD可以说是Spark框架的核心。RDD[15]即ResilientDistributedDataset,弹性分布式数据集。它是一个分布式的内存抽象,RDD允许程序员在大数据上进行基于内存的计算而仍然能够保持较好的容错率。由于现有的流式数据处理的系统对一下的两种问题无法有效的解决:第一、迭代算法,这在图形学和机器学习中很常见。第二、交互式数据挖掘工具。因此催生了RDD。在两种案例中,使得数据常驻内存可以带来较高的效率。为了同时达到较好的容错性,RDD提供了一种非常严格的内存共享机制:即RDD只能以只读的形式被访问。对于创建RDD,只可以通过其他RDD上的批量操作来进行。

在Sprak框架下,RDD被视为对象。通过这些对象上的方法来实现转换。

一旦RDD被定义后[15],就能够被程序员使用了(在动作中使用)。所谓的动作就是向程序返回值的操作或者将数据传递给存储系统的一些操作。这些操作包括count(返回RDD的元素数量)、collect(返回元素本身)以及save(将RDD输出到存储系统)。在Spark中,RDD只有在动作第一次使用时,才会计算RDD,这样保证了在构建RDD时,通过管道的方式完成转换。

程序员也可以从两个方面来控制RDD。分别是缓存和分区。用户如果请求缓存RDD,那么在同时可以将已经被计算过的RDD分区存储备用。缓存的RDD通常来说都是存放在内存中。另一方面,RDD还能使用户通过关键字来指定分区顺序,这是个可选的项目。当前支持的分区是哈希分区和范围分区。

借助[14]于RDD,SparkStreaming能有较好的容错性。容错性对于流式计算来说非常的重要,一旦无法保证容错能力,那么对于流式计算来说是致命的打击。因为任何一个RDD都是弹性分布式可重算的数据集,其中包含了确定的操作关系,当数据在某个RDD上出现错误了,可以通过原始的数据转换操作到其余的RDD上重新执行计算操作,从而保证了系统的稳定性和容错能力。图15就是反映RDD操作继承关系的图例。

ApacheSamza是一个分布式的流处理框架。它使用ApacheKafka来传递消息,使用ApacheHadoopYARN来提供容错、安全和资源管理等功能。

与Storm和Spark都不同,Samza的处理对象不是元组也不是DStream,而是一条一条的消息。在深入理解Samza之前,需要了解下面几个概念:流、作业、任务、区间分割等。

流[17]的概念与Storm和Spark中提到的概念相同。Samza通过对流进行抽象使得其支持嵌入式系统。在Kafka中,流就是一个主题。在数据库中我们可以通过更新操作来读取流。在Hadoop中我们可以在HDFS中定位文件目录。

作业:在Samza中作业就是在一系列输入流上执行逻辑转换并将其加到输出队列中以供输出到输出流上的代码的集合。如果不考虑可扩展性,我们所需要的仅仅是流和作业。我们将流和作业分割成小的部分:分区和任务。

区间:如图19所示,每一个数据流都被分割成一个或多个区间。流中的每一个区间就是一串有序的消息的序列。序列中的每条消息都有一个唯一的识别码,可以是整型序列、比特字符、或者字符串,这些都是由特定的系统所决定的。当一条消息被添加到一个流中去,它仅仅会被添加到一个区间上,至于如何选定区间,则是由用户通过一些算法来决定的。

任务:大规模的作业将会被分成很多的任务。任务是作业的组成单元,正如区间是数据流的组成单元。每个任务都按顺序的拥有它所在输入区间的消息。

Samza的成分有三层:Streaminglayer、executionlayer和processinglayer。并且为每一层都提供了支持,分别是Kafka、YARN和SamzaAPI。这三块共同构成了Samza(如图20)。

虽然三者在不同的框架下的专业术语名称不一致,但是其代表的概念具有很大的相似性。

表3列出了三个框架下的基本术语。

Samza

Stream

Source(s)

spouts

Receivers

consumers

Primitive(p)

Tuples

DStream

Message

Computation(c)

Bolts

Transformation

WindowsOperations

Tasks

表3三个框架术语表

表4列出了三个框架的不同之处。

Delivery

Semantics

AtleastOnce

ExactlyOnce

State

Management

stateless

stateful

Latency

Sub-second

seconds

Language

Support

Any

Scala,Java,Python

Scala,Java

表4三个框架差异

从表4可以看出,三个框架无论在支持的语言还是其他判断方面都是存在着差异的,但是无法评判哪个更优秀,哪个更完美。只有结合具体的环境、具体的需求才能做出最优的判断。当然,实际上,这三个框架都有很多公司在用。

使用Storm的公司有:Twitter,雅虎,Spotify还有TheWeatherChannel等。

使用Spark的公司有:亚马逊,雅虎,NASAJPL,eBay还有百度等。

使用Samza的公司有:LinkedIn,Intuit,Metamarkets,Quantiply,Fortscale等。

除了上面具体分析的Storm、Spark和Samza三大主流框架外,还有包括ApacheFlink[18]、StreamBase[19]、YAHOOS4[20]等出色的框架,当然也存在着基于上述框架改编的新框架,限于篇幅,此处不再赘述。

THE END
1.数据挖掘师在市场中的地位与未来的展望随着大数据技术的飞速发展,数据挖掘这一领域也迎来了前所未有的爆炸性增长。作为一名专业的数据分析人员,数据挖掘师不仅需要具备深厚的数学和统计学知识,还要有强大的编程能力以及对业务模式的深刻理解。在这个信息爆炸时代,能够从海量数据中提取有价值信息的人才是最宝贵的。 https://www.f3kg3td6j.cn/jun-lei-zi-xun/496259.html
2.探索数据世界的未知领域,特征生成挑战文化艺术摘要:在数据世界中,我们不断探寻未知的领域,试图解锁其中的奥秘。有时在生成特征的过程中,我们可能会遇到无法生成特定特征的挑战。这并不意味着探索的结束,反而是探索旅程中的一部分。面对未知,我们需要保持开放的心态,持续挖掘数据的潜力,以期发现新的见解和洞见。尽管面临挑战,但我们仍要勇往直前,不断突破自我,探https://m.hkstv.net/post/7768.html
3.大数据挖掘价值洞察研究大数据挖掘价值-洞察研究 下载积分: 1388 内容提示: 大数据挖掘价值 第一部分 大数据挖掘概述 2 第二部分 大数据挖掘技术 4 第三部分 大数据挖掘应用场景 https://www.doc88.com/p-69619764087796.html
4.机器学习面临的三个关键数据挑战数据质量、稀疏性和完整性直接影响最终模型的准确性,并且是当今机器学习面临的一些比较大的挑战。拥有清晰数据定义,政策并探索行业特定数据标准的组织将在短期和长期项目中受益。 如果您还没有,那么您的组织应该首先定义自己的数据收集策略,元数据格式,然后应用标准的安全技术。数据质量和稀疏性齐头并进。下一步,设置元https://www.528045.com/article/7f423917e5.html
5.科学网—人工智能赋能科学与工程前沿——知识与数据融合之径人类的认知过程是从数据、信息、知识到智慧螺旋上升的,数据驱动的人工智能在这段时间已明显发现短板,数据和物理规律、数据与模型、物理信息神经网络等等旨在知识和数据双驱动的人工智能被提上日程。 但知识与数据如何双驱动属于探索的“前沿”。在数据集、特征工程、激活函数、网络结构(比如,约束条件,网络参数)、损失函https://blog.sciencenet.cn/home.php?mod=space&uid=32670&do=blog&id=1465224
6.机器学习:开启智能未来的钥匙腾讯云开发者社区机器学习作为人工智能的核心方法,通过分析数据中的隐藏规律,让计算机从中获取新的经验和知识,不断提升和改善自身性能,从而像人一样根据所学知识做出决策。 机器学习涉及概率论、统计学、微积分、代数学、算法复杂度理论等多门学科,是一门多领域交叉学科。其应用范围极为广泛,涵盖自然语言处理、图像识别、推荐系统、金融https://cloud.tencent.com/developer/article/2478495
7.数据挖掘的挑战与机遇:大数据时代的测试在大数据时代,数据挖掘技术已经成为企业和组织中最重要的一项工具,它可以帮助企业发现隐藏在海量数据中的价值,提高业务效率,提升竞争力。然而,数据挖掘技术也面临着许多挑战,如数据质量问题、算法复杂性问题、计算资源问题等。因此,在大数据时代,数据挖掘技术的发展和应用需要不断创新和挑战。 https://blog.csdn.net/universsky2015/article/details/137296733
8.数据挖掘有什么作用与意义帆软数字化转型知识库3、数据挖掘工具:常用的数据挖掘工具包括Weka、RapidMiner、KNIME、SAS、SPSS等。这些工具提供了丰富的功能,能够帮助用户进行数据预处理、建模、评估等工作。 4、大数据技术:随着数据量的增加,传统的数据挖掘技术和工具在处理大数据时面临挑战。为此,出现了Hadoop、Spark等大数据技术,这些技术能够处理海量数据,提高数据挖掘https://www.fanruan.com/blog/article/575539/
9.数据挖掘技术方法(精选十篇)数据挖掘技术方法 篇4 关键词:大数据,审计,数据分析 0引 言 审计是保障国家经济社会健康运行的“免疫系统”,在数据信息爆炸的今天,大数据的浪潮促使着审计思维模式的变革。面对已经到来的大数据时代和由此带来的数据量、数据类型、数据处理方式的转变,意味着在大数据环境下进行审计数据分析将面临更大的技术挑战。2012年https://www.360wenmi.com/f/cnkeyg31vygx.html
10.人工智能跨领域应用探索:机遇与挑战并存机器人自然语言处理人工智随着AI技术的迅速发展,伦理和社会影响的问题也日益突出,renshangzhibo.net,。AI的应用涉及到隐私、安全和公平等多个方面。例如,在医疗和金融领域,数据隐私是一个重要问题。如何保护用户的个人信息,同时又能利用数据进行有效的AI分析,这是一个亟待解决的挑战,zhiboduniang.net,。 https://www.163.com/dy/article/JJAQ3NKH055670JB.html
11.数据挖掘与预测分析:趋势效益挑战预测分析工具的学习曲线、复杂性和成本是主要的挑战。另外,如果你正致力于部署先进的预测分析工具,你需要聘请专业的高薪人才来处理数据的准备和清理,建立和评价预测模型,并将模型和他们的结果集成到你的BI、CRM和其他应用环境中。如果你决定通过数据库内分析把预测分析倡议整合到数据仓库中,你需要将处理这些功能的人组成http://www.searchdatabase.com.cn/7-19620/
12.大数据技术的道德意义与伦理挑战TheMoralMeaningandEthicalChallenges这就是在各个层次上由大数据技术开拓的数据挖掘的“文明指引”。一旦“文明指引”通过云计算被揭示出来且用于指导个体行动者的行动,道德价值和社会法则就会“具形化”于大数据技术展现的物质形式和文明形态之中。从这一意义上看,如果说数据挖掘技术带来了数据驱动型社会的降临,那么它的驱动力结构体现的文明指引功能,就http://www.sass.cn/109002/41985.aspx
13.数据挖掘VS机器学习,你了解多少?如今,获取数据比以往任何时候都更容易,但从数据中生成见解和信息正变得更具挑战性。企业经常发现自己处于一种情况,他们拥有的数据远远超过他们所知道的数据,这可能会适得其反,导致无所作为。 数据挖掘和机器学习是企业将这些庞大的数据库转化为有用信息的两种主要方法。 https://www.fromgeek.com/telecom/509859.html
14.干货▏面向大数据的时空数据挖掘面向大数据的时空数据挖掘的挑战 尽管时空数据挖掘研究在近几年引起了人们的广泛关注并得到快速发展,但与传统数据挖掘相比,时空数据挖掘研究还远未成熟。随着时空数据采集效率的不断提高,时空数据积累越来越大,时空数据挖掘也面临诸多挑战。 理论框架 相较于传统的数据挖掘技术,时空数据挖掘研究还远未成熟。对于结构复杂且https://czj.guiyang.gov.cn/new_site/zwgk_5908373/zszc_5908415/202205/t20220531_74514473.html
15.什么是数据挖掘?分析如何揭示洞察力51CTO博客数据挖掘的风险与挑战 数据挖掘伴随着风险和挑战,与任何涉及使用潜在敏感信息或个人身份信息的技术一样,安全性和隐私是最大的问题。 在基本层面上,挖掘的数据需要完整、准确、可靠;毕竟,你用它来做重大的商业决策,经常与公众、监管机构、投资者和商业伙伴进行互动。现代的数据形式也需要新的技术,例如将各种分布式计算https://blog.51cto.com/u_15127621/2766923
16.全面解析BMS电池管理系统的定义功能及其在现代科技中的关键作用然而,随着电池技术的复杂化和应用场景的多样化,如何高效、安全地管理电池成为了一个亟待解决的挑战。电池管理系统(BMS,Battery Management System)应运而生,作为电池技术发展的重要组成部分。BMS不仅提升了电池的性能和寿命,还确保了使用过程中的安全性。本文将深入探讨BMS的定义、功能及其在现代科技中的关键作用,旨在https://www.sekorm.com/news/529057385.html
17.中国大数据行业面临的五大挑战以及应对策略挑战二:数据挖掘分析模型建立 步入大数据时代,人们纷纷在谈论大数据,似乎这已经演化为新的潮流趋势。数据比以往任何时候都更加根植于我们生活中的每个角落。我们试图用数据去解决问题、改善福利,并且促成新的经济繁荣。人们纷纷流露出去大数据的高期待以及对大数据分析技术的格外看好。然而,关于大数据分析,人们鼓吹其神奇价值https://news.yaozh.com/archive/5653.html
18.每周文娱观察2017.2.17数据显示,产业整体规模已突破5000亿元,而泛娱乐内容的消费用户已达10亿人次。巨大的市场空间吸引了大批金融资本进入泛娱乐产业。去年文化产业基金新增241只,募集规模达264.5亿元。 30、支付宝关闭付款二维码转账:扫码付款限线下 支付宝宣布,2017年2月20日起,支付宝的付款码功能将只能用于线下付款,不再具备线上转账付款http://www.leshanvc.com/cygc/23764.html
19.物联网数据挖掘研究论文物联网中的数据挖掘是物联网技术中较为重要的一个环节,其价值体现在为物联网应用数据大量增长下提供强力补充。当前基于海量数据的增加,物联网数据挖掘正面临着一定的挑战,而云计算的出现为其提供了一个全新的发展方向。该文以云计算、物联网、数据挖掘技术特征与相互联系为基础,分析基于云计算平台的物联网数据https://www.unjs.com/lunwen/f/20190123020542_1865768.html
20.推进智慧医院建设助力医院高质量发展新闻动态智慧医院建设也面临着一些挑战: 1、各科室需求不一致,模块、功能选择难 智慧医院建设所需的技术创新容易,但智慧医院相关模块的建立困难。智慧医院建设所需的技术支撑是一个容易解决的问题,难点在于,各个科室或者部门提出的需求不一致,如何权衡协调各个科室、部门之间的需求,建立高效适宜的智慧化功能、模块,并协调各相关https://www.dzrmyy.cn/trend/13779.html
21.数据治理:面临的挑战与应对策略,数据挖掘,BI,商务智能,数据分析数据治理:面临的挑战与应对策略 在业务IT化的过程中,企业通过第三方厂商、自研等方式构建多种数据系统,采用多种系统中的数据化治理,是实现数据效能、数据驱动业务的关键步骤。 许多大数据公司在过去一段时间都得到了较好的发展,究其原因是因为恰逢专注于业务流的信息化建设正在向数据化转型。http://km.ciozj.com/Detail.Aspx?AI=98488
22.数据挖掘论文摘要:文章首先对数据挖掘技术及其具体功能进行简要分析,在此基础上对科研管理中数据挖掘技术的应用进行论述。期望通过本文的研究能够对科研管理水平的进一步提升有所帮助。 关键词:科研管理;数据挖掘;技术应用 1数据挖掘技术及其具体功能分析 所谓的数据挖掘具体是指通过相关的算法在大量的数据当中对隐藏的、有利用价值的https://www.ruiwen.com/lunwen/5421411.html
23.数据挖掘过程中可能遇到的挑战和难题有哪些?数据挖掘过程中可能遇到的挑战和难题包括数据质量、数据量大、数据的复杂性、模型选择、解释和应用等方面。管理者可以通过加强数据质量管理、配备更强大的硬件和软件、学习新的数据挖掘技术和方法、建立跨学科的团队、鼓励创新和实践等措施来应对这些挑战。https://www.mbalib.com/ask/question-4287fe162960fd7c73a171c2f700c56f.html