医患冲突的微博舆情议题建构地域化差异分析及情绪监测模型的建立医患关系

由中国新闻史学会计算传播学研究委员会与微热点大数据研究院联合举办的第二届传播数据挖掘竞赛已圆满落幕,15支战队尽显风采;以下为“基于新媒体传播数据的地域舆论环境感知”选题优秀作品《医患冲突的微博舆情议题建构、地域化差异分析及情绪监测模型的建立》,由来自汕头大学“开心开心幸福冲冲冲队”精彩呈现。

关键词:医患关系;网络舆论;地域特征;情绪指数模型;舆论预警。

一、绪论1.研究背景及意义

1)研究背景

4月24日上海三甲医院仁济医院的胸外科的赵晓菁主任,当天正在出专家门诊,在接诊过程中,由于患者插队而与患者产生摩擦;警察赶到后,医生与警方发生口角,最终警方升级为强制传唤,赵晓菁主任被派出所民警带走问话。

这一事件在网络平台上引发了大量用户以“医患关系”为核心的热烈讨论,由于群体极化效应,在“患者插队”的传言未被官方证实之前,热搜“手铐带走拒绝患者插队的医生”引发公众情绪,产生对警方的不满;但本文认为舆论最终焦点仍是反映社会当前的重要问题——医患矛盾这一症结上。

为了研究关于医患冲突事件,网民们的舆论是否存在地域差异性的参与特征和情绪倾向,以及网民会否因为所处的环境的经济水平、医疗水平等现实生活方面的差异而在网络舆论参与中产生的不同的话题倾向,展开讨论和研究。

2)研究意义

我国近几年正处于医疗改革的关键时期,各种医疗事故和医患纠纷频现,不仅在一定程度上引发舆论对于医疗保健行业的不满,也体现了当前社会的供需矛盾所在。

情绪监测模型的建立旨在通过勾画用户特征画像和实时监测情绪,评估相似医患事件,进行舆情模拟和预警,为应对与缓和医患冲突,从民声民意中整体评价目前医疗体系的利弊,构建和谐的医患关系与社会秩序和建设“健康中国”提供参考和建议。

2.研究内容

运用模糊综合评价法和文本分析技术,对医患冲突的网络舆情进行情绪倾向性分析;利用主成分分析法确定议题权向量后建立舆论情绪监测模型。

3.研究方法

本文主要采用定性和定量的分析方法:包括内容分析法、关联度分析法、模糊综合评判法、PCA主成分分析法。

除了对原始数据集的处理和挖掘基础上,引入了源自国家统计局网站和国家卫健委《2018年我国卫生健康事业发展统计公报》的外部数据,根据各省经济、医疗等社会状况统计数据对各省经济、医疗的多项指标进行评分。

对事件舆情热度、情绪进行量化评价、分析,利用降维的思想、主成分分析方法,确定5个关于医患事件的核心舆论议题的评价矩阵和权向量,建立合理的评价模型。

根据模型公式及其数学性质,给出模型的适用范围;为了进一步研究医患冲突事件的风险管控,本研究还参考了等级全息建模(HierarchicalHolographicModeling)的风险识别方法,以研究公共危机事件网络舆情风险管理。

二、大数据挖掘在研究中的应用

1.数据预处理

数据预处理:在人工筛选后再对数据集进行机器清洗。

本文使用Python-pandas、Numpy、re等对数据的基本信息进行统计、了解,包括:数据规格、标签、数据索引等;对数据中的认证类型、性别、地域进行分类,删除了所有带不明信息的数据,最终获得约351000条有效数据,并对数据的基本情况进行了描述性统计和可视化;由于部分地区数据较少以及研究对象的限制,本文的研究对象将排除港澳台等省市地区。

2.数据处理

依此,本文确定了五个关于医患问题的研究方向:政府因素、医疗体制、医疗资源、患者素质、医生服务态度。

①事件关键词矩阵的生成

②建立各地区在各议题上的舆论情绪指数Hn,m的数学模型

其中a为满足条件PM的项数,n为地区代号。

为了研究不同省份在不同议题上舆论的情绪,建立各地区在各议题上的舆论情绪指数Hn,m数学模型:

其中n为地区代号,m为议题代号。

本文数据处理指标概况

医疗完善资源是指在一定社会经济条件下提供医疗服务的生产要素的总称,包括医务人员,医疗机构和医疗床位等资源和信息,其多寡也是衡量国家综合国力的一个重要指标。

自新中国成立以来70年,我国在公共卫生领域获得了骄人的成就,平均预期寿命从不到35岁(1949年)上升到77.0岁(2018年),直接反映的是我国卫生医疗水平持续增长;然而,我国是人口大国,幅员辽阔,医疗资源在时空上的分布不均一直是不可忽视的现实矛盾;而无论是在总量上还是在人均上,我国的的医疗卫生资源与其他发达国家相比仍有较大的差异。

从一般印象来说,我国医疗卫生资源的空间分布呈现“东部总量高人均低,西部总量低人均高”的特点,但是为了更加详细客观地表现我国医疗卫生资源分布的现状,本文将通过建立省级医疗卫生资源标准化指标,对各省的医疗资源进行量化评分。

针对各省的医疗资源的量化评分,本文选取了每万人拥有卫生技术人员数(人)、每万人拥有卫生人员数(人)、每万人拥有卫生机构床位数(张)、每万人拥有卫生机构数(个)和人均医疗卫生机构诊疗次数(次)这5个参数加权平均后建立各省份人均医疗资源量化得分;选取地方财政医疗卫生支出(亿元)、卫生人员数(万人)、卫生机构床位数(万张)、医疗卫生机构数(个)和医疗卫生机构诊疗人次(亿次)这5个参数加权平均后建立各省份医疗资源总量量化得分。

由于各参数之间存在量纲上的巨大差异,本文对数据同样进行了标准化处理,以此消除量纲差异带来的不变。

标准化的计算公式如下:

其中Yn为第m省份的医疗(人均/总量)量化得分,Ymi为第m省份的第i项参数,max(Yi)和min(Yi)分别是第i项参数的最大值和最小值。

对得出的数据进行可视化处理后得出各地区人均医疗资源分布图和各地区医疗资源总量分布图。

如图1.1和图1.2所示:

图1.1各省份人均医疗资源分布

图1.2各省份医疗资源总量分布

一方面优质医疗卫生资源集中某个地区,导致大量外地人口异地看病就医,对医疗资源进行挤压;另一方面,由于医疗管理体系的不完善,医疗资源紧张与资源浪费现象并存。

2.我国各省经济发展水平

经济发展水平也是衡量一个国家或地区综合实力的一个重要指标,反映了社会经济现象在不同时期的规模或水平。

我国作为世界第二大经济体,自改革开放以来一直保持经济的中高速增长,更是在2019年人均GDP突破一万美元;不过由于人口基数庞大,各地区经济发展不均衡等因素,我国仍然属于中等收入的发展中国家。虽然经济发展水平属于宏观概念,但是隐藏在其背后的众多因素切实影响着社会生活的方方面面。

互联网和移动终端的普及、教育和医疗水平的提高,这一系列指标的提升,无疑与我国经济发展水平不断提高有显著关系;更重要的是——个人在互联网上对某事件的看法,有可能因其受教育水平或经济水平的影响,而在情感或观点上表现出区域差异;为了更加详细客观地表现我国经济发展现状分布的现状,本文将通过建立省级经济发展水平指标,对各省的经济水平进行量化评分。

其中Pn为第n省份的量化得分,Xni为第n省份的第i项参数,max(Xi)和min(Xi)分别是第i项参数的最大值和最小值。对得出的数据进行可视化处理后得出各省份经济发展现状分布图。

如图1.3所示:

图1.3各省份经济发展现状分布

由图1.3和数据显示,我国经济发展水平相对较高的区域集中在东部沿海地区,如北京、上海、江苏和浙江等地。

从整体上看,虽然我国各省经济发展迅速,但人均可支配收入在不同地区间存在较大差距;而区域人均收入的差异,也会导致人口的大量迁移,使得部分相对落后的省市发展缓慢,间接导致医疗资源分配的不合理,可能会影响在舆论场上关于医患矛盾的观点和看法。

本文分析认为原本假设对于网络舆论的导向因素的考量不足,网络空间中的舆论差异不仅来自于用户的现实生活体验,还可能来自于网络舆论领袖、媒体框架、拟态环境等网络大众传播因素;另外,本文研究所纳入的现实社会与地区的分异因素还能够继续扩展,诸如教育、治安等现实社会因素都可能对于用户网络舆论倾向产生一定的影响。

四、医患关系舆情数据呈现与分析

我国是一个人口大国,对于医疗资源的供给还处于不平均、不完善的阶段;看病难、看病贵,是我国长期存在的一个民生问题。

1.“仁济医院赵晓箐事件”网络舆情的总体特征

2019年4月25日,一则“上海仁济医院医生赵晓菁因拒绝接诊插队病人,被警方戴上手铐带走问话”的消息,引爆舆论。

26日,当地警方通报称,网传患者陈某无理插队与事实不符,且医患双方确实发生冲突,警方口头传唤赵晓菁配合调查,在赵某拒不配合,并与处置民警发生肢体冲突的情况下,现场使用手铐强制传唤,符合法律规定。

27日,医警双方接受采访时均称,处理上有提升空间,风波本可以避免。

下面将对医患冲突事件的每个议题(包括医疗体制、医院管理、患者素质、医疗资源和医生服务态度)进行进一步的分析,从细分议题的角度进行挖掘,以期总结出本次医患冲突事件的舆情倾向特性。

2.“仁济医院赵晓箐事件”网络舆情的分议题情绪特征与分析

本文对五个议题的情绪得分进行主成分分析,研究在舆论中五大议题的情绪影响力高低。

结果显示,医疗体制、医院管理、患者素质、医疗资源和医生服务态度分别占比53.36%、18.36%、11.27%、6.82%和6.07%;其中“医疗体制”议题对情绪评分的影响力占比最大,而“医生服务态度”议题的影响力占比最小。

此外,由“五大议题情绪表征地域差异图”可知,在各个分议题的情绪分布上出现明显的地区差异,各地区网友对“患者素质”有着最高的消极情绪,而对“医疗体制”的舆论情绪消极度最低。

1)医疗体制议题的舆情情绪特点

与此同时,医疗体系资源分配不均,优质医护人员在地区上有质量和数量的倾斜,也解释了医疗体制如何最大程度地影响着舆论情绪;此外,建立建全快速的申诉、处理和援助渠道,也是网民对医改的主要诉求之一。

2)医院管理议题的舆情情绪特点

“医院管理”议题也是舆论讨论的重点,本次医患纠纷发生在仁济医院医院门诊,作为医患接触的一线,门诊是最容易发生矛盾与冲突的地方,医院更应加强对门诊的安保与管理工作。

在本事件中,有舆论认为赵晓菁医生为维护就诊秩序与患者发生矛盾,但医院的安保人员却缺位,对医院的管理提出质疑;对此,网民认为医院应当派办公室人员或保安人员进行现场处置,而不能让专心看病的医生充当保安人员角色,卷入繁杂的排队管理事务中,医院管理需要从加强安保和完善诊疗制度两方面同时进行优化。

3)患者素质议题的舆情情绪特点

“患者素质”的情绪表现是5个议题中最消极的;本文在对医患冲突的舆论事件研究过程中发现,公共舆论已对医患冲突基本持有“医闹”这一先入为主的立场,即使在对事件过程尚未清楚的情况下,存在较多网民认为患者无理取闹在先;从词云图中常见“混蛋”“无赖”等贬义评价,对未有警方通报前传言“插队”的行为表示不满(此处“微笑”是网络表情,意为对医闹事件层出不穷感到讽刺、无奈、无语);对此,网民认为需要有强制措施维持就诊秩序,患者需要尊重医生,遵守规则。

该议题的地区差异也最明显;其中,新疆、江西、广西对患者素质的舆论情绪消极程度一般,而其他医疗水平良好的地区如广东、北京、江苏,事发地上海,舆论情绪的消极度更高;后者属于经济发展较快的地区,信息传播渠道较为通畅,公民的收入和教育水平相对较高,相比于经济发展较为滞后的地区而言,更能理解医护人员,从医生的角度看待日益紧张的医患关系;可见,医患问题的舆论具有一定现实性的地域差异。

4)医疗资源议题的舆情情绪特点

不少网民认为医患冲突的症结是“医疗资源”不足和优秀医疗团队的在地域上的分布不均,即使同一地区,诊疗秩序、管理水平也参差不齐;在本次事件中,患者专程从东北某省赶至上海仁济医院就诊;跨省就医的存在,正是医疗资源不平衡的体现,却也直接挤压其他地区的医疗资源,助长了看病难的问题。

在现实中,北京作为我国首都,毋庸置疑拥有全国第一梯队的医疗资源水平,人均医疗水平最高,但对于“医疗资源”议题,北京网民却持有最高的消极情绪;词云图表示,患者“大老远”“从外地”到外地就医,医生还是需要“加班”“加号”才能满足患者的就医需求;这种矛盾,反映出医疗资源紧张是一个全国性的问题,舆论普遍对此表示不满。

5)医生服务态度议题的舆情情绪特点

在“看病难”问题普遍存在的现实中,由于医疗资源供需的不匹配,医护人员工作强度大的现象极为常见,无法保证患者的就医体验,这使患者对医生产生高高在上、没耐心、不够负责的印象,引起病患或病患家属不满。

不过在此事件中,赵晓菁医生的评价多为良性评价,词云图中常见“专业”、“敬业”、“优秀”等正面词语;相当一部分网民认为需要理解医护人员的工作强度和职业难处,遵守秩序、多加配合。

3.基于框架理论对舆论议题和情绪的分析

框架指的是人们用来认识和阐释外在客观世界的认知结构,它来自于个体过去实际生活的经验;是每个人在“存在、发生和意义这些问题上进行持续不断的选择、强调和表现时所使用的准则;而引入大众传播领域则表现为“媒介怎样反映现实并规范了人们对之的理解”,即议题、话语和意义是如何被准确建构、组织并得以展开的。

受众同样具有自己的框架——受众框架即受众个人接触和处理大众传播信息的认知结构和诠释规则,这种结构和规则来自于受众过去社会生活经验的积累、既有的价值观和态度、行为取向,并导引着受众个人处理新的信息。

此次“仁济医院赵晓菁”事件中,从五大议题的关键词词云图来看,当前舆论语境倾向以“优秀”、“尊重”、“良心”等带有正面积极色彩的词语描述医生;而描述患者的词语则一般是“无赖”、“闹事”、“闯入”等,带有负面消极的色彩;上述词语在关于医患冲突的新闻报道同样常见,这显示出受众框架具有“先入为主”的特点;当然,这种受众框架也造成了舆论对于事件的多样化讨论。

五、监测模型建立与回测1.数据挖掘各阶段的应用

1)主成分分析

(主成分分析结果)

2)舆论指数监测模型建立

本文参照模糊数学中模糊综合评价法的思想,对舆情这种较客观的事物进行合理量化;而经查阅大量文献发现,评判舆情的指标主要集中在其烈度、广度、以及其所带主流情绪,依此我们建立如下舆论监测模型。

首先对上述处理得到的新数据集按议题切片,针对其情绪评分、及基本情况(包括数量、认证等级等)进行基于机器学习的主成分分析,把主成分分析的结果作为其权值,与五个议题的情绪得分矩阵进行运算,得出总体情绪综合评分HH。

如下所示即为本文所建立的舆论检测模型:

2.模型下放回测

依据回测得到的其他数据分析,本模型在其他省份、其他分区的监测结果也贴合现实,依此我们认为回测结果满意,本模型可行。

六、医患冲突事件网络舆情的现实意义与管理建议

医患冲突这一类的公共突发事件舆论威力巨大,网络舆情痛点几乎指向医疗体制、患者素质、医院管理等事件环境所涉及的所有主客体;此外,每个地方由于经济发展不同步,医疗资源分配不均,网民对于医患冲突事件的态度出现一定的地域分歧。

结合地域发展的多元复杂性,网络舆情的爆发性和裂变化,国内医患关系的严峻性,各地方政府、媒体单位、医院运用舆论情绪监测模型,在舆情发展的不同阶段监测,在扩散阶段适时适当引导和介入;对于预防进一步的舆情危机、为政府医疗体制改革指向、保护舆论事件涉事人员、加强因地制宜的医院管理等改善当前医患关系紧张局面的措施具有重要意义。

1)预防进一步的舆情危机

建立完善的监测和预警机制,以应对医患冲突事件进一步恶化,舆论情绪监测模型为实时观测涉事人员和单位动态提供可能;此过程中,通过有效分析识别可能发生的危险,并提出预防措施,以便应对突发事件,降低甚至消除危机所发生的概率。

2)为政府医疗体制改革聚焦痛点

医疗体制改革是我国医疗卫生事业发展的主推器,紧张的医患关系背后隐含的体制等民生问题在舆论情绪中有所体现;微博舆论此时充当谏言纳策的角色,及时从冲突事件中获取建议,如增加医疗财政投入、协调医疗资源的科学分配、医疗分配供给改革等,舆情监测可以为不同地方政府也能给予更精准的建议和参考。

3)保护舆论事件涉事人员

根据预警,执法机关、行政单位、医院管理方和媒体都更应对涉事的医生、患者方及其他旁观者都进行更全面地采集证言,及时还原事件全貌,及早降低网络舆论的不确定性对涉事人员的伤害;预警信号推动事件透明公开的处理,有助于平息医患冲突舆情的升温。

4)加强因地制宜的医院管理

各地的医疗、经济、文化发展程度不同,情绪监测模型包括了对医院管理的评分,各地医院参考事件本身和自身医院管理的具体情况作出适合,调整更符合自身的诊疗制度、加强安保维持秩序。

5)媒体互动改善医患矛盾语境

新闻媒体除了避免报道把关不严、立场失位等原因的新闻媒体失范,减少医患冲突舆情发生反转,自媒体和新闻媒体都担当起应有的媒体责任和社会责任;在冲突矛盾的语境下,采用更客观、不带有情感倾向的报道,积极与政府单位、医院方进行多方冷静的传播互动,以改善事件发生进程的舆论情绪环境。

本文由@数据锅原创发布于人人都是产品经理,未经许可,禁止转载。

THE END
1.数据挖掘概念(AnalysisServices该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: 您在查找什么?您要尝试找到什么类型的关系? 您要尝试解决的问题是否反映了业务策略或流程? 您要通过数据挖掘模型进行预测,还是仅仅查找受关注的模式和关联? https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.数据分析与数据挖掘概述数据分析与挖掘1.什么是数据分析与数据挖掘技术? 所谓数据分析,即对已知的数据进行分析,然后提出一些有价值的信息。比如统计出平均数、标准差等信息,数据分析的数据量有可能不会太大。而数据挖掘,是指对大量的数据进行分析和挖掘,得到一些未知的有价值的信息等,比如从网站的用户或用户行为数据中挖掘出潜在需求信息,从而对网站进行改https://blog.csdn.net/weicao1990/article/details/79535991
3.数据挖掘(计算机科学)数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。简介 需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98/216477
4.数据挖掘与数据分析的异同点及典型应用案例在现代数据驱动的世界中,数据挖掘和数据分析已经成为了许多行业的重要工具。尽管这两个概念经常被人混淆,但它们各自有着独特的作用和应用场景。作为一个数据分析的从业者,我也曾在入门时对这两个术语感到困惑。经过实践,我逐渐发现了它们的异同,并且这些知识也帮助我在实际工作中做出更为精准的判断。 https://www.cda.cn/view/204806.html
5.数据挖掘与分析报告范文7篇.docx数据挖掘与分析报告范文第一篇可以肯定,这东西跟数学和算法有关,而且很难!既然很难,那么就要付出更大的努力去学习了,去图书馆找书,找了好久发现老师经常说的hadoop都被借完了,只好找了本《数据挖掘教程》//《dataminingatutorial-basedprimer》,看起来比较入门,借着平时空闲的时间翻阅了一下,数据挖掘,顾名思义https://www.renrendoc.com/paper/234470348.html
6.数据挖掘和数据分析的区别数据分析更多采用统计学的知识,对源数据进行描述性和探索性分析,从结果中发现价值信息来评估和修正现状。数据挖掘不仅仅用到统计学的知识,还要用到机器学习的知识,这里会涉及到模型的概念。数据挖掘具有更深的层次,来发现未知的规律和价值。 数据挖掘的概念 https://www.dongao.com/cma/zy/202406204447304.html
7.数据挖掘和数据分析有什么区别?数据分析一般都是得到一个指标统计量结果,比如总和、平均值等,这些指标数据都需要与业务结合进行解读,才能发挥数据的价值与作用。 数据挖掘一般是指从大量的数据中通过算法搜索隐藏在其中有价值的信息的过程。数据挖掘侧重于解决四类问题:分类、聚类、关联和预测(定量、定性),其重点在于寻找未知的模式与现律。 http://pm.itheima.com/news/20230213/113659.html
8.论述数据挖掘与数据可视化分析的区别与联系数据挖掘和可视化之前在「数据分析岗」的文章提到,会写一期有关「数据挖掘岗」的文章。 本次结合最近学的统计推断,来波简单的实战。 首先请教了两位从事过数据挖掘的大佬,简单说了下什么是数据挖掘。 让小F和大家对数据挖掘有个认识,毕竟这可是大佬的切身体会!!! 当然也感谢我司的大佬给出的建议,小F也是受益颇多。 https://blog.51cto.com/u_16099170/9487255
9.智多星大数据分析云平台实践老酱调研了市场上各类数据挖掘和分析工具,针对不同需求不同数据分析能力的人集成了多种工具提供使用: 数据挖掘和建模人员:提供SAS和分布式R语言工具,可以使用专业的数据分析工具进行挖据和建模; 具有数据库操作能力的人员:提供类SQL方式的自定义快速报表开发工具,所有报表设计和菜单控件均通过浏览器可视化配置; https://www.cnblogs.com/lj-C/p/14954191.html
10.数据分析中的数据挖掘需要哪些工具数据分析中的数据挖掘需要以下工具:一、数据库管理工具;二、ETL工具;三、数据可视化工具;四、统计分析工具;五、机器学习工具;六、自然语言处理工具;七、大数据处理工具;八、Web爬虫工具;九、时间序列分析工具;十、图像处理工具;十一、数据挖掘工具。 一、数据库管理工具 https://www.linkflowtech.com/news/1596
11.商战数据挖掘:你需要了解的数据科学与分析思维数据科学的一条重要原则是,数据挖掘的流程可以分解为几个通俗易懂的环节。有些环节涉及信息技术的应用,如数据中模式的自动发现和评估,而有些则主要依赖数据分析师的创意、常识和商业知识。理解数据挖掘的整个过程,有助于组织数据挖掘项目,使它们更接近系统性的分析,而不是凭借运气和个人智慧的冒险行为。 https://www.ituring.com.cn/book/tupubarticle/28952
12.数据分析和数据挖掘.PDF数据分析和数据挖掘 数据分析与数据挖掘 数据分析与数据挖掘 实战案例 实战案例 杨大川 杨大川 dyang@ dyang@ 讲师简介 讲师简介 杨大川 - 迈思奇科技有限公司CTO 杨大川 - 迈思奇科技有限公司CTO 微软MVP.2004 (最有价值专家) 微软MVP.2004 (最有价值专家) 曾任美国硅谷Annuncio公司首席工程师 曾任美国硅谷https://max.book118.com/html/2018/0521/167776088.shtm
13.数据挖掘论文一、数据挖掘概述 (一)数据挖掘技术。数据挖掘是指从大量的、不规则、乱序的数据中,进行分析归纳,得到隐藏的,未知的,但同时又含有较大价值的信息和知识。它主要对确定目标的有关信息,使用自动化和统计学等方法对信息进行预测、偏差分析和关联分析等,从而得到合理的结论。在档案管理中使用数据挖掘技术,能够充分地发挥https://www.unjs.com/lunwen/f/20220924130749_5650839.html
14.Python数据分析与挖掘实战(豆瓣)此外,他精通Java EE企业级应用开发,是广东工业大学、华南师范大学、华南农业大学、贵州师范学院、韩山师范学院、广东技术师范学院兼职教授,著有《神经网络实用教程》、《数据挖掘:实用案例分析》、《MATLAB数据分析与挖掘实战》《R语言数据分析与挖掘实战》等畅销书。https://book.douban.com/subject/26677686/
15.数据分析和数据挖掘有什么区别大数据是互联网上海量的数据挖掘,而数据挖掘更多的是针对企业内部的小数据挖掘,数据分析是进行有针对性的分析和诊断,大数据需要分析的是趋势和发展趋势,数据挖掘主要是发现问题和诊断。 大数据是互联网上海量的数据挖掘,而数据挖掘更多的是针对企业内部的小数据挖掘,数据分析是进行有针对性的分析和诊断,大数据需要分析的https://www.qianjia.com/zhike/html/2020-10/12_29313.html
16.数据分析师和数据挖掘师有什么区别数据分析师和数据挖掘师有什么区别 【数据分析师】: 数据分析师是指基于大数据进行数据处理分析的人员,能熟练的用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总、理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析师在企业中发挥的价值在于能够利用已有的数据资料(一手或二手的)进行https://www.elecfans.com/d/884393.html
17.数据挖掘机器学习总结(通用6篇)紧张而又充实的学习生活结束了,想必你学习了很多新学习技巧,让我们好好总结一下,写一份学习总结吧。那么你知道学习总结该如何写吗?以下是小编为大家整理的数据挖掘机器学习总结(通用6篇),仅供参考,希望能够帮助到大家。 数据挖掘机器学习总结 篇1 20xx年时间转瞬逝去了,在各位领导的带领下、在同事们的支持和帮助下https://www.yjbys.com/zongjie/xuexi/697188.html
18.数据挖掘与预测分析(第2版)中文pdf扫描版[119MB]电子书下载通过做数据分析学习数据分析。《数据挖掘与预测分析(第2版)》提供了从数据准备到探索性数据分析、数据建模及模型评估等整个数据分析过程的内容。《数据挖掘与预测分析(第2版)》不仅提供了理解软件底层算法的“白盒”方法,而且提供了能够使读者利用现实世界数据集开展数据挖掘与预测分析的应用方法。 https://www.jb51.net/books/665227.html
19.数据分析网【脑图】电商类APP的数据门户/数据产品的功能框架脑图 【地图】数据分析师职业发展必备知识地图 最新文章 行业资讯 大数据 数据分析 数据挖掘 人工智能 数据产品 数据报告 数据报告 艾媒咨询:2024年中国自助餐行业消费者行为洞察数据 近年来,中国自助餐行业发展迅速,消费者行为呈现出多样化趋势。随着消费者对健康饮食和个https://www.afenxi.com/