商业智能实现的三个层次:数据报表多维数据分析和数据挖掘综合知识

商业智能的实现有三个层次:数据报表、多维数据分析和数据挖掘。

1)数据报表

如何把数据库中存在的数据转变为业务人员需要的信息?大部分的答案是报表系统。简单说,报表系统是BI的低端实现。传统的报表系统技术上已经相当成熟,大家熟悉的Excel、水晶报表和ReportingService等都已经被广泛使用。但是,随着数据的增多,需求的提高,传统报表系统面临的挑战也越来越多。

(1)数据太多,信息太少。密密麻麻的表格堆砌了大量数据。到底有多少业务人员细看过每一个数据?到底这些数据代表了什么信息、什么趋势?级别越高的领导,越需要简明的信息。

(2)难以交互分析、了解各种组合。定制好的报表过于死板。例如,我们可以在一张表中列出不同地区、不同产品的销量,另一张表中列出不同地区、不同年龄段顾客的销量。但是,这两张表无法回答诸如“华北地区中青年顾客购买数码相机类型产品的情况”等问题。业务问题经常需要多个角度的交互分析。

(3)难以挖掘出潜在的规则。报表系统列出的往往是表面上的数据信息,但是海量数据深处含有哪些潜在规则呢?什么客户对我们价值最大?产品之间相互关联的程度如何‘越是深层的规则,对于决策支持的价值越大,但是,也越难挖掘出来。

(4)难以追溯历史,形成数据孤岛。长期运行中产生的数据往往存在于不同地方,太旧的数据(例如一年前的数据)可能已被业务系统备份出去,导致宏观分析、长期历史分析难度很大。

显然,随着时代的发展,传统报表系统已经不能满足日益增长的业务需求了,企业期待着新的技术。数据分析和数据挖掘的时代正在来临。值得注意的是,数据分析和数据挖掘系统的目的是带给我们更多的决策支持价值,并不是取代数据报表。报表系统依然有其不呵取代的优势,并且将会长期与数据分析、挖掘系统一起并存下去。

2)多维数据分析

如果说在线事务处理(OLTP)侧重于对数据库进行增加、修改和删除等日常事务操作,在线分析处理则侧重于针对宏观问题全面分析数据,获得有价值的信息。

为了达到OLAP的目的,传统的关系型数据库已经不够了,需要一种新的技术叫做多维数据库。

数据分析系统的总体架构分为4个部分:源系统、数据仓库、多维数据库和客户端。

①源系统:包括现有的所有OLTP系统,搭建BI系统并不需要更改现有系统。

②数据仓库:数据大集中,通过数据抽取,把数据从源系统源源不断地抽取出来,可能每天一次,或者每3个小时一次,当然是自动的。数据仓库依然建立在关系型数据库上,往往符合“星型结构”模型。

③多维数据库:数据仓库的数据经过多维建模,形成了立方体结构。每一个立方体描述了一个业务主题,例如销售、库存或者财务。

④客户端:好的客户端软件可以把多维立方体中的信息丰富多彩地展现给用户。

3)数据挖掘

广义上说,任何从数据库中挖掘信息的过程都州做数据挖掘。从这点看来,数据挖掘就是BI.但从技术术语上说,数据挖掘(DataMining)指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。

现举一个关联销售的案例。美国的超市有这样的系统:当你采购了一车商品结账时,售货员小姐扫描完了你的产品后,计算机上会显示出一些信息,然后售货员会友好地问你:我们有一种一次性纸杯正在促销,位于F6货架上,您要购买吗?这句话绝不是一般的促销。因为计算机系统早就算好了,如果你的购物车中有餐巾纸、大瓶可乐和沙拉,则86%的可能性你要买一次性纸杯。结果是你说:“啊,谢谢你,我刚才一直没找到纸杯。”

这不是什么神奇的科学算命,而是利用数据挖掘中的关联规则算法实现的系统。

每天,新的销售数据会进入挖掘模型,与过去N天的历史数据一起被挖掘模型处理,得到当前最有价值的关骐规则。同样的算法,分析网上书店的销售业绩,计算机可以发现产品之间的关联以及关联的强弱。

温馨提示:因考试政策、内容不断变化与调整,信管网网站提供的以上信息仅供参考,如有异议,请以权威部门公布的内容为准!

信管网致力于为广大信管从业人员、爱好者、大学生提供专业、高质量的课程和服务,解决其考试证书、技能提升和就业的需求。

信管网软考课程由信管网依托10年专业软考教研倾力打造,官方教材参编作者和资深讲师坐镇,通过深研历年考试出题规律与考试大纲,深挖核心知识与高频考点,为学员考试保驾护航。面授、直播&录播,多种班型灵活学习,满足不同学员考证需求,降低课程学习难度,使学习效果事半功倍。

THE END
1.数据挖掘概念(AnalysisServices尽管关系图中所示的过程是一个循环过程,但是每个步骤并不需要直接执行到下一个步骤。创建数据挖掘模型是一个动态、交互的过程。浏览完数据之后,您可能会发现数据不足,无法创建适当的挖掘模型,因此必须查找更多的数据。或者,您可以生成数个模型,但随后发现这些模型无法充分地回答定义的问题,因此必须重新定义问题。您可能https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.数据挖掘的分析方法可以划分为关联分析序列模式分析分类分析和数据挖掘流程 首先,我们需要明确数据挖掘的基本流程,如下表所示: 流程图 数据收集数据预处理数据分析结果评估结果展示 各步骤详解 1. 数据收集 这一阶段收集待分析的数据,可能来自数据库、CSV文件、API接口等多种来源。示例代码如下: importpandasaspd# 从CSV文件读取数据data=pd.read_csv('data.csv')# 读取名为dahttps://blog.51cto.com/u_16213297/12863680
3.人工智能三大算法数据挖掘机器学习与深度学习的核心之争在人工智能的发展历程中,三大算法——数据挖掘、机器学习与深度学习,被广泛认为是推动AI技术进步的关键驱动力。这些算法不仅为各行各业带来了革命性的变化,也使得我们能够更好地理解和利用大量数据。 首先,我们来看一下数据挖掘。它是一种从大量数据中发现模式或关联的过程。这项技术被广泛应用于商业领域,如推荐系统https://www.9e80wtu09.cn/shu-ma/384090.html
4.2019届毕业设计(论文)阶段性汇报第一阶段我主要完成了论文调研、基线训练及基础生成模型的搭建工作。首先,我从童声识别,数据增强和生成对抗网络三个方面调研了论文并进行了总结整理。然后我用成人语音及少量儿童语音训练了基线模型,并用少量儿童语音训练了基础生成模型,测试了生成数据的效果。 https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3366
5.人工智能心得体会9篇数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程——空间——活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三https://www.unjs.com/fanwenwang/xdth/20221130181133_6041555.html
6.公司员工职业规划(精选10篇)(一)数据与员工招聘 对于职业发展规划来说,从员工招聘阶段就要全面介入。数据分析模型会帮助人力资源管理人员做出更加理性的决策。首先,数据挖掘模型会抓取数据库里应聘者职业技能、薪酬要求以及培训教育等方面的信息,然后对比岗位需求,通过数学运算找到最佳的资源配置方式。招聘过程的最根本诉求就是解决企业职位与候选人之间https://www.ruiwen.com/yuangongzhiyeguihua/6087991.html
7.江苏省发展和改革委员会经验交流规范权力运行强化监督制约(三)建设过程。系统建设经历三个阶段:一是前期准备阶段(2011年5月—2012年1月)。委内成立领导小组和具体项目组,并先后赴国家预防腐败局、国家信息中心、海关总署、北京市发改委以及省内有关地区和部门进行调研,多次到国家发改委和省纪委汇报总体思路、听取指导意见。在此基础上,完成了系统顶层设计,编制了权力运行流http://fzggw.jiangsu.gov.cn/art/2015/5/6/art_3968_6645997.html
8.人工智能学习心得(通用28篇)数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程——空间——活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三https://www.yjbys.com/xindetihui/fanwen/3342600.html
9.数据挖掘的三个要素是什么帆软数字化转型知识库数据挖掘的三个要素是数据、算法、应用。数据是数据挖掘的基础,数据质量的高低直接影响挖掘结果的准确性和实用性;算法是数据挖掘的核心,通过各种算法可以发现数据中的规律和模式;应用是数据挖掘的最终目标,挖掘出的信息需要在实际应用中得以验证和利用。数据质量的高低直接影响挖掘结果的准确性和实用性。如果数据存在大量https://www.fanruan.com/blog/article/593841/
10.2020年第七期全国高校大数据与人工智能师资研修班本次培训采用“云课堂线上精讲+专家技术在线答疑指导+学员群内实操答疑+助教指导”结合的方式,包含前置基础课程学习阶段和核心课程学习阶段。全程强调动手实操;内容以代码落地为主,以理论讲解为根,以公式推导为辅。讲解数据分析与挖掘项目实训的模型理论和项目代码实战,梳理技术框架,从根本上解决如何使用模型、优化模型的http://www.tipdm.com/pxdt/2015.jhtml
11.刘献君—决策支持:院校管理中一个被忽视的重要领域新中国成立以来,我国高校决策支持发展变化大体经历了新中国成立后前三十年、1978-1998年、1998年至今三个阶段,每个阶段都有各自的特点。但总体来说,决策支持仍是高校管理中一个被忽视的领域,存在的问题包括决策支持没有受到应有的重视,职能部门成为决策支持的主体,数据分析系统不健全,没有建立科学的决策支持平台等。https://xww.hustwenhua.net/info/1002/32633.htm