数据挖掘

======================第一章===========================

1.给出下列英文缩写或短语的中文名称和简单的含义

(1)DataMining数据挖掘:从大量数据中提取或者“挖掘”知识。

(2)Artificialintelligence人工智能:是研究开发用于模拟延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的术学科。

(4)Knowledgeengineering知识工程:人工智能在知识信息处理方面的发展,研究如何由计算机表示知识,进行问题的自动求解。

(5)Informationretrieval信息检索:指将信息按一定的方式组织和存储起来,并根据信息用户的需要找出有关的过程和技术。

(6)Datavisualization数据可视化:是关于数据之视觉表现形式的研究。

2.给出下列英文缩写或短语的中文名称和简单的含义:

(1)OLTP(on-linetransactionprocessing)联机事务处理:是推动和管理面向事务的应用程序的一类程序,典型地针对数据输入和恢复事务处理。

(2)OLAP(on-lineanalyticprocessing)联机分析处理:使分析人员,管理人员或执行人员能够从多角度对信息进行快速一致,交互地存取,从而获得对数据的更深入了解的一类软件技术。

(3)decisionsupport决策支持:为决策者提供分析问题,建立模型,模拟决策过程和方案的环境

(4)KDD(knowledgeDiscoveryindatabases)从数据集中识别出有效地、新颖的、潜在有用的,以及最终可以理解的模式的非平凡过程。

(5)transactiondatabase事务数据库:由一个文件组成,其中每个记录代表一个事务的集合

(6)distributeddatabase分布式数据库:是用计算机网络将物理上分散的多个数据库单元连接起来组成一个逻辑统一的数据库。

3.数据(data)、信息(information)和知识(knowledge)是人们认识和利用数据的三个不同阶段,数据挖掘技术是如何把它们有机的结合在一起的?

客观世界---(收集)---》数据---(分析)---》信息---(深入分析)---》知识---(决策与行动)---》客观世界。

8.从数据挖掘研究角度看如何理解数据、信息和知识的不同和联系?

数据时原材料他只是描述发生了什么事,并不能构成决策或行动的可靠基础。通过对数据进行分析找出其中关系,赋予数据以某种意义和关联,就形成所谓信息。信息虽给出了数据中一些有定义意义的东西,但它往往和人们需要完成的任务没有直接的关系,也还不能做为判断,决策和行动的依据,而所谓知识,可定义为信息块的一组逻辑联系其关系式通过上下文或过程的贴近度发现的。

9.简述数据挖掘技术将来的发展趋势

1)、形式化描述的语言

2)、可视化的数据挖掘过程

3)、web网络中数据挖掘的应用

4)、融合各种异构数据的挖掘技术

5)、处理的数据将会涉及到更多的数据类型

6)、交互式发现

7)、知识的维护更新

11、你认为应该如何来理解KDD和datamining的关系?说明你的理由?

在某些时候可以认为datamining就是KDD,但datamining所包含的范围相对比较小一点。Datamining简单地讲就是从大量数据中挖掘或抽取出知识,而KDD它是一个从大量数据中抽取挖掘出未知的,有价值的模式或规律等知识的复杂过程。

12.解释datamining理解为KDD整个过程的一个关键步骤的合理性?

都是利用智能方法挖掘数据模式或规律知识

=========================第二章====================

1.KDD是一个多步骤的处理过程,它一般包含哪些基本阶段?简述各阶段的功能。

KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理、数据挖掘以及模式评估等基本阶段。

(3)数据预处理阶段的功能:对前一阶段抽取的数据进行再加工,检查数据的完整性及数据的一致性。

(4)数据挖掘阶段的功能:运用选定的数据挖掘算法,从数据中提取出用户所需要的知识。

(5)模式评价阶段的功能:将KDD系统发现的知识以用户能了解的方式呈现,并且根据需要进行知识的评价。如果发现知识和用户挖掘的目标不一致,则重复以上阶段以最终获得可用知识。

5.阶梯处理过程模型是知识发现的基本模式,画出它的基本处理流程,并简要说明各阶段的任务。

图参考课本P43页图2-1KDD阶梯处理过程模型;

源数据—(数据选择)—>目标数据—(数据预处理)—>预处理后的数据—(数据缩减)—>缩减后的数据—(数据挖掘)—>模式—(模式解释与评估)—>知识各阶段任务:

(3)数据预处理:主要是对上一阶段产生的数据进行再加工,检查数据的完整性及数据一致性,对其中的噪音数据进行处理、对丢失的数据可以利用统计方法进行填补。对一些不适合于操作的数据进行必要的处理等。

THE END
1.数据挖掘概念(AnalysisServices与以下关系图的突出显示相同,数据挖掘过程的第一步就是明确定义业务问题,并考虑解答该问题的方法。 该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: 您在查找什么?您要尝试找到什么类型的关系? https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.大数据与分析:数据挖掘概念及流程数据挖掘是一个从大量数据中提取有价值信息或模式的过程,它依赖于统计学、机器学习、数据库技术和人工智能等多个领域的知识和技术。以下是数据挖掘的概念及其流程的详细解释: 一、数据挖掘的概念 数据挖掘(Data Mining)是指通过特定的计算机算法对大量的数据进行自动分析,以揭示数据中的隐藏模式、未知的相关性和其他有https://blog.csdn.net/NSAcbba/article/details/143417836
3.python数据挖掘算法的过程详解python这篇文章主要介绍了python 数据挖掘算法,首先给大家介绍了数据挖掘的过程,基于sklearn主要的算法模型讲解,给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下+ 目录 1、首先简述数据挖掘的过程 第一步:数据选择 可以通过业务原始数据、公开的数据集、也可通过爬虫的方式获取。 第二https://www.jb51.net/article/238548.htm
4.什么是数据挖掘?——数据挖掘的过程,方法和实例什么是数据挖掘?——数据挖掘的过程,方法和实例 数据挖掘是指从大量的数据中发现有价值的模式、规律和知识,以支持决策和预测分析的过程。通过数据挖掘,我们可以从海量数据中发现隐藏的关联性和趋势,为企业和组织提供宝贵的商业洞察力。下面将介绍数据挖掘的过程、方法和实例。https://www.jiandaoyun.com/fe/sjwjsjwjdg/
5.数据挖掘试题答案版.pdf7.多维数据集通常采用星型或雪花型架构,以事实 表为中心,连接多个维度表。 8.决策树是用对象属性作为结点,用对象值作为分 支的树结构。 9.关联可分为简单关联、时序关联和因果关联。 10.BP神经网络的作用函数通常为区间的。 n.数据挖掘的过程主要包括确定业务对象、数据准备、 数据挖掘、结果分析及知识同化等几https://www.renrendoc.com/paper/327121640.html
6.数据挖掘的体系结构是什么数据挖掘的六大过程说了这么多数据挖掘中的经典算法,但是如果你不了解概率论和数理统计,还是很难掌握算法的本质;如果你不懂线性代数,就很难理解矩阵和向量运作在数据挖掘中的价值;如果你没有最优化方法的概念,就对迭代收敛理解不深。所以说,想要更深刻地理解数据挖掘的方法,就非常有必要了解它后背的数学原理。 https://blog.51cto.com/u_16213595/7898197
7.什么是数据挖掘数据挖掘介绍?IBM数据挖掘是从大数据集中识别模式和提取有用洞察的整体过程。它可用于评估结构化和非结构化数据,以识别新信息。营销和销售团队经常使用它来分析消费者行为。例如,数据挖掘方法可用于观察和预测行为,包括客户流失、欺诈检测、市场篮子分析等。 文本挖掘又称文本数据挖掘,是数据挖掘的一个子领域,旨在将非结构化文本转换为结https://www.ibm.com/cn-zh/topics/data-mining
8.数据挖掘论文二、数据挖掘的重要性 在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自https://www.unjs.com/lunwen/f/20220924130749_5650839.html
9.数据仓库和数据挖掘12篇(全文)数据仓库和数据挖掘 第1篇 在90年代初, 数据仓库这个概念第一次是由数据仓库支付提出的。一般一个面向集成、主题的, 随着时间变化并且信息本身能够相对稳定的数据集合就成为一个数据仓库, 它主要用于对管理决策过程的支持。 (一) 数据仓库的类型 根据数据仓库所管理的数据类型和它们所解决的企业问题范围, 数据仓库可https://www.99xueshu.com/w/ikeyy9nb2adc.html
10.郝祥军等AI重塑知识观:数据科学影响下的知识创造与教育发展方法论法耶德(Fayyed)等认为,“数据库知识发现”就是从数据中发现知识的全过程,包括数据如何存储和访问,算法如何缩放到海量数据集并仍然高效运行,结果如何解释和可视化等;数据挖掘是将适当的预处理数据转化为模式,随后可以转化为有价值的和可操作的知识(Fayyed et al., 1996)。之后一系列关于数据挖掘的过程模型被提出并https://www.163.com/dy/article/I42N4AD40516QHFP.html
11.数据挖掘的步骤包括什么数据挖掘是一个通过特定算法对大量数据进行处理和分析,以发现数据中的模式、趋势或关联性的过程。下面详细介绍数据挖掘的步骤包括什么? 1、数据收集 首先,需要收集与待挖掘主题相关的数据。可能涉及从各种来源(如数据库、文件、网络等)获取数据,并将其清洗、整合到一个统一的格式中。 https://www.pxwy.cn/news-id-81213.html
12.商战数据挖掘:你需要了解的数据科学与分析思维数据科学的一条重要原则是,数据挖掘的流程可以分解为几个通俗易懂的环节。有些环节涉及信息技术的应用,如数据中模式的自动发现和评估,而有些则主要依赖数据分析师的创意、常识和商业知识。理解数据挖掘的整个过程,有助于组织数据挖掘项目,使它们更接近系统性的分析,而不是凭借运气和个人智慧的冒险行为。 https://www.ituring.com.cn/book/tupubarticle/28952
13.数据挖掘论文医院加强数据挖掘技术应用方向的探索上,可以从客户拓展这个角度出发实现对于医疗信息管理。例如通过数据挖掘技术多方进行患者信息比对,同时制订完善的医疗服务影响策略方式,加强对于客户行为的分析;在数据挖掘的基础之上,增强其技术应用的实用性,在分析的基础之上比对自身的竞争优势,实现医院资源的合理规划与合理配置,例如药品https://www.ruiwen.com/lunwen/7945818.html
14.《python数据分析与挖掘实战》笔记第1章腾讯云开发者社区数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。 1.3、数据挖掘的基本任务 数据挖掘的基本任务包括利用分类与预测、聚类分析、关联规则、时序模式、偏差检测、智能推荐等方法,帮助企业https://cloud.tencent.com/developer/article/1796252
15.数据分析的过程主要包含这7个方面数据分析的过程是循序渐进的过程,主要包括如下7个方面。 一个完整的数据分析的过程,应该包括数据采集、数据存储、数据提取、数据挖掘、数据分析、数据展现、数据应用七个方面。今天我们就来从这几个角度着手,简要介绍一下数据分析的过程。 1. 数据采集 数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条https://www.jiushuyun.com/hywz/2061.html
16.科学网—数据挖掘(Datamining)简介数据挖掘技术大量应用于信息、工程和商业领域,较少应用于科学领域。实际上,科学领域内的数据分析就是一个典型的数据挖掘的过程,只不过,这个过程是通过推理,演算和假设等等人工思维所完成,而非像数据挖掘那样依赖于机器和算法来自动地完成。此外,科学领域人们习惯限定问题的尺度来简化问题,其所分析的变量远远小于工程和社https://blog.sciencenet.cn/blog-200199-750526.html
17.什么是分析,数据分析决胜未来下图描述了一个完整的自然语言处理的普遍过程。 图5:自然语言处理过程示意图 4.文本挖掘与文本分析 文本挖掘处理文本数据本身,文本分析涵盖范围比较广泛,通常包括应用统计分析、机器学习和其他一些高级分析技术,但通常被认为等同于文本挖掘。 5.机器学习 机器学习的核心是使用算法来建立量化分析模型,帮助计算机模型从数据https://vip.kingdee.com/article/255974176719074560