Astosequentialpatternmining,miningalgorithmisveryimportant.
对于序列模式数据挖掘来说,挖掘算法是系统成功的关键.
互联网
Itgenerallywasdividedintodescriptivedataminingandpredictivedatamining.
一般将数据挖掘分为描述数据挖掘和预测数据挖掘两大部分.
Finally,threemainapplicationsofdatawarehousearedepictedindetail.
最后阐述了数据仓库的三大应用:灵活报表、OLAP分析、数据挖掘.
Severalsessionminingonsequentialtimeintervalsachievearulemeasuresequence.
对若干连续期间的数据挖掘将形成规则的度量值序列.
DataMining.You'veprobablyheardofit.Ormaybeyou'veheardofdatawarehousing.
数据挖掘,你可能已经听说过,或者你可能听说过数据仓储.
DataMiningisacquireandmineknowledgefrommassdata.
数据挖掘就是从大量的数据中提取或挖掘知识.
Thistopicindevelopmentusesdatawarehouseanddataminingtechnology.
本课题在开发中使用数据仓库及数据挖掘技术.
Thegeneticalgorithmplaysanimportantroleinareaofdatamining.
遗传算法在数据挖掘中有着重要的地位.
Clusteringisanefficientmethodofdataminingandtextmining.
聚类是一种有效的数据挖掘和文本挖掘方法.
Finally,theimprovedalgorithmNEAisappliedintheevaluationofteaching.
最后将关联规则数据挖掘的方法运用到课堂教学评价中.
Thealgorithmwillhaveimportantapplicationinhighattributedimensionaldatamining.
该方法将在高属性维稀疏数据挖掘中起重要的作用.
Dataminingtechniqueisbrieflyintroducedinthepaper.
AllthesecharacteristicsdeterminethesystemandmethodofDataMining.
这些特点决定了数据挖掘的内容体系和研究方法.
Miningmaximumfrequentpatternsisakeyproblemindataminingresearch.
挖掘最大频繁模式是多种数据挖掘应用中的关键问题.
DiscussingDataMiningapplicationinCRManditsimplementstep.