上海交通大学媒体与传播学院

“思源湖畔”栏目为《上海交通大学学报哲学社会科学版》特色栏目,致力于刊载问题导向、交叉融合的前沿成果,展现中国学者跨学科研究的新思想、新观点和新方法。本期“思源湖畔”主题为:“国家形象”。

作者简介|PROFILE

葛岩:上海交通大学媒体与传播学院、心理与行为科学研究院特聘教授。

本文亮点

什么是形象?研究形象的价值是什么?有没有可靠的方法能够测量人们对其他国家形象的认知?如果群体之间彼此的偏见难以避免,他群看我群,我群看他群,都难逃偏见,有没有什么方法能够抑制偏见,防止国家形象研究落入群体间偏见的陷阱?本文《基于图式理论的国家形象测量》针对这些问题,本文借助认知心理学中的图式构念,提出基于图式的形象理论,并以该理论为依据,提供了一组国家形象调查、数据挖掘的研究样例。本文的目的是通过形象研究避免国家间认知偏见影响实际行动乃至动摇世界的稳定与安宁。

摘要:围绕什么是形象、怎样用调查和数据挖掘方法测量国家形象问题,本文提出了基于图式的形象理论,分析了形象的结构、功能和测量方法。依据该理论,形象图式内容的稳定性、内容间的结构联系和结构性激活的可能性,是形象测量的基本着眼点。在该理论框架下,本文还通过样例分析了调查和数据挖掘方法在形象测量中的应用,讨论了二者的优缺点。

关键词:形象;国家形象;国家形象调查;形象挖掘;对外宣传

【内容简介】

一、讨论范围

二、基于图式的形象理论

无论中外,形象定义多显得宽泛、含糊,所指差别很大。例如,形象和看法常被不加辨析地使用。某国报纸报道中国的负面新闻,这是报道我国的负面形象,还是对我国的负面看法?如果二者是一回事,为什么要区别形象和看法?如果二者不同,它们又是怎样的关系?为明确定义形象,笔者提出基于图式的形象理论(SchemabasedImageTheory,简称SIT)。

(一)从图式到形象

八十多年前,巴特列特(F.Bartlett)发现,遇到同类事物信息,记忆里稳定储存,用来表征该类事物的概念会进入意识,为处理外部信息提供模板或图式(schema)。社会心理学家菲斯克(S.Fiske)和林维尔(P.Linville)认为:“图式是指(记忆中)与一个给定概念有关,且联接丰富的信息网络。”在结构、功能和激活方式等方面,图式、形象、刻板印象、行为脚本(behavioralscript)高度相似,但因使用语境不同,它们的所指有所区别,衍生出不同的评价性意涵。

(二)图式的结构

早期研究者把图式设想为一种插槽结构(slotstructure),其中包含最易联想的事物特征及默认值。奎廉(M.Quillian)等人的语义记忆模型(SemanticMemoryModel,SMM)假设,源于经验的概念或知识在人脑中分类,以网络形式相对稳定地储存在记忆里。网络中的每个概念是一个节点。属于同类事物的概念节点连接更为紧密,彼此激活的概率也更大。这种机制被称作扩散激活(spreadingactivation)。从这个网络到那个网络,激活关系复杂交错,不同网络会出现嵌套关系。

(三)图式的功能

图式的根本功能是高效处理环境信息。事物只需显露一两个特征,其他节点便可能结构性激活(structuredactivation),无须细致耗时的分析。不过,经验产生于具体境遇,储存入图式后,经验被抽象化、类别化,可能带来误判。

(四)图式的测量

研究者开发出若干实验方法来测量图式内容。以刻板印象为例,如强迫选择法(Forcedchoice)、随意选择法(Pickany)、两极里克特量表测量法(BipolarLikertTypeTest)、反应时测量(ReactionTime,RT)等。另一种重要方法使用分类框架判断群体/国家的形象类别。国际政治学者伯丁(K.Boulding)最早建议用友善/能力两维度构造国家形象类别框架。经许多研究者后续工作,友善/能力已经成为群体间形象的普适测量框架。

(五)形象与看法

(六)SIT的五点主张

1.形象图式是记忆中相对稳定储存的,表征对事物特征认知和情感评价的结构或网络。

2.形象图式的功能是组织和阐释外部信息,通过网络节点的结构性激活机制来提高认知效率,但同时也可能带来对事物的歪曲或误判。

3.在处理认知任务时,若干图式可能同时工作,彼此产生嵌套和竞争。

5.形象图式储存在记忆里,测量形象图式本质上是记忆内容测量。

三、调查:从记忆中测量形象

控制实验是测量形象图式的合适方法,但成本高,常有效度问题。问卷调查更为常见。

(一)国家、地区和城市形象调查的典型程序

(二)商业类调查样例

使用拉拉(V.Lala)、奥尔瑞德(A.Allred)和查克拉波迪(G.Chakraborty)的《多维度国家形象量表》,说明商业类调查在国家形象研究中的应用。

三位学者试图开发一份国家形象量表,目的是理解国家形象对产品销售的影响。他们采用四个步骤:

1.阅读文献,梳理出有经验证据支持、能够测量国家形象图式内容的问项,并添加研究者认为的重要问项,提出初步问项清单。

3.综合上述结果,确定问卷问项。

4.使用一组地理、文化、政治和经济制度差别明显的国家为调查目标,在适当样本群体中实施调查。

(三)国际关系类调查样例

以皮尤研究中心的2020的报告《美国人视疫情扩散为最严重的国际威胁》(下文简称《重大威胁》)为例,扼要说明非商业调查对形象图式研究的价值和局限。

《重大威胁》旨在了解美国人对重大国际威胁的看法。问项设计简单直接,仅要求样本报告对一组选项的看法(主要威胁、小型威胁、不是威胁)。调查发现,62%的样本把中国实力增长看作重大威胁。这些看法是否稳定存在,与哪些其他看法有结构连接,能否结构性激活均不在调查者考虑范围之内。不过,《重大威胁》同时回顾连续年度调查的结果,显示出十年间美国公众稳定地把中国实力增长视为重大威胁,中国威胁已然是美式中国形象图式中的稳定内容。

四、数据挖掘:从媒介中测量形象

媒介内容是意识活动的结果,二者存在某种映射关系。围绕研究问题,确定分析指标,量化处理媒介文本,可能较好揭示出文本中映射的意识活动,包括形象图式。这种映射理论有助于理解传统内容分析和近年兴起的数据挖掘在形象研究中的应用。本节笔者的一个国家形象挖掘项目,在SIT框架下讨论数据挖掘的应用价值和局限。

(一)国家形象挖掘步骤

第一步,我们从数据库中抽取十五年中国报道总体(19230篇,遗漏率<1%)。依据配额随机抽样方法,得到4000份样本,通过人工编码制作机器学习材料,训练多种分类器,最终用多项式贝叶斯分类器实现报道主题分类(准确率=0.927),划出政治与外交、经济、文化娱乐、卫生与食品安全、教育与科技五类报道。采用同样程序完成印度报道总体(11016篇)抽样和分类。

第二步,假设词汇在某类主题报道文本中的出现频度近似表征该类主题形象图式中稳定存在的内容,用TFIDF得到报道中全部词汇的向量矩阵,把TFIDF值高的词汇视为形象图式网络中具有高稳定性的关键词。

比较中印经济报道,取出有国别排他性的独特词汇,计算它们和关键词的共现频率。达到共现阈值的独特词,无论TFIDF权重高低,都被视为形象网络节点。这样,网络囊括权重高、在图式中稳定存在的关键词,也吸收了与关键词反复共现,与关键词节点结构联系密切的国别独特词,依次构造出两国形象图式。

第四步,采用社区探测算法,依据节点连接的数量关系得到形象图式维度,如中国经济形象8个维度,政治外交形象42个维度,印度经济形象18个维度,政治外交形象27个维度。

第五步,从多个情感分析器中,选择效果较好的VADER,把关键词放回其出现的语句中,计算情感值,得出形象图式不同维度和整体的情感值。

(二)国家形象图式的几种分析方法

国家形象图式提供了多种分析的可能性,本文介绍三个样例。

1.关键词权重/排序分析

2.关键词出现篇数在总篇数中占比分析

追踪特殊关键词出现篇数占报道总篇数比例,可以推知它们突出程度的变化趋势。以humanrights为例比较中国政治外交报道和经济报道,发现在中国经济和政治外交形象中,《纽约时报》把人权问题当作两个相对独立的领域处理,在政治外交形象中更易于激活,更为敏感。

3.自主网络分析

社会网络分析允许以网络中的特定节点为中心建立自主网络,观察特定节点和其他节点的关系,比较节点在不同形象图式中的位置。以较中印政治外交形象图式中的humanrights网络为例,发现在中国政治外交报道中,人权问题和新闻故事有广泛的联系,人权在中国形象中更容易被结构性激活。

五、结语

原文《基于图式理论的国家形象测量》刊于《上海交通大学学报(哲学社会科学版)》2022年第3期(第22-40页),若下载原文请点击左下方阅读原文,或搜索下方网址:

THE END
1.4个步骤,构建一个有指导的数据挖掘模型腾讯云开发者社区这构造有指导的数据挖掘模型的过程中,首先要定义模型的结构和目标。二、增加响应建模。三、考虑模型的稳定性。四、通过预测模型、剖析模型来讨论模型的稳定性。下面我们将从具体的步骤谈起,如何构造一个有指导的数据挖掘模型。 有指导数据挖掘方法: 把业务问题转换为数据挖掘问题 https://cloud.tencent.com/developer/article/1041871
2.数据挖掘一般有哪些步骤?创新互联数据挖掘一般有哪些步骤?数据挖掘基本步骤,数据挖掘过程定义问题、建立数据挖掘库、分析数据、准备数据、建立模型、评价模型和实施。挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,作出正确的决策。下面跟小编一起来看看吧。 网站建设公司,为您提供网站建设,网站制作,网页设计及定制网站建设服务,专注于企业网站建设,高http://chengdu.cdxwcx.cn/article/ejgip.html
3.空间数据挖掘认识及其思考AET具体来说,空间数据挖掘就是在海量空间数据集中,结合确定集、模糊集、仿生学等理论,利用人工智能、模式识别等科学技术,提取出令人相信的、潜在有用的知识,发现空间数据集背后隐藏的规律、联系,为空间决策提供理论技术上的依据[1]。 1 空间数据挖掘的一般步骤http://www.chinaaet.com/article/3000015273
4.用友分析云一般步骤7篇用友分析云一般步骤7篇 很高兴能够为您带来用友分析云的使用手册。用友分析云是一款强大的数据分析工具,它可以帮助您深入挖掘数据,发现商机,实现精准决策。无论您是数据分析新手,还是经验丰富的分析师,用友分析云都能满足您的需求。接 创建时间 2024-02-26 17:38:36https://hsy.chanjet.com/wenku/wk262e523fe313.html
5.数据分析与挖掘11篇(全文)Web Mining(Web挖掘)是由Oren Etzioni在1996年首先提出的,一般地对Web数据挖掘做如下定义:从大量Web文档结构和使用的集合C中发现隐含的模式p。如果将C看作输入,p看作输出,那么挖掘的过程就是从输入到输出的一个映射:ξ:C→p。 3. Web数据挖掘的基本步骤 https://www.99xueshu.com/w/ikeyp687ycyz.html
6.数据挖掘的步骤包括以下步骤:()刷刷题APP(shuashuati.com)是专业的大学生刷题搜题拍题答疑工具,刷刷题提供数据挖掘的步骤包括以下步骤:()A.数据抽样B.数据整理C.模型构建D.模型评价的答案解析,刷刷题为用户提供专业的考试题库练习。一分钟将考试题Word文档/Excel文档/PDF文档转化为在线题库,制作自https://www.shuashuati.com/ti/7c02c30b35d44a878095e40d6ded48a0.html?fm=bd57bb8d50e5790641c9fb65691073399c
7.系统集成项目管理速记口诀1. 数据(签)迁移 2. 数据(合)合并 3. 数据(同)同步 4. 数据交换(换) 5. 数据(窗)仓库 6. 数据(帘)联邦 7.2商业智能的实现有三个层次: 口诀:挖多宝 1. 数据(挖)挖掘 2. (多)多维数据分析 3. 数据(宝)报表 7.3实施商业智能的步骤: https://developer.aliyun.com/article/1204984
8.数据挖掘技术在客户关系管理中如何应用四、客户关系管理应用数据挖掘的步骤 1.需求分析 只有确定需求,才有分析和预测的目标,然后才能提取数据、选择方法,因此,需求分析是数据挖掘的基础条件。数据挖掘的实施过程也是围绕着这个目标进行的。在确定用户的需求后,应该明确所要解决的问题属于哪种应用类型,是属于关联分析、分类、聚类及预测,还是其他应用。应对现有https://www.wenshubang.com/xingzhengguanlibiyelunwen/151599.html
9.数据挖掘的过程张杰整理数据挖掘是指一个完整的过程,该过程从大型数据库中挖掘先前未知的、有效的,可实用的信息,并使用这些信息做出决策或丰富知识。下图描述了数据挖掘的主要步骤和过程。 数据挖掘过程中各步骤的大体内容如下: 第一步:确定挖掘目的。认清数据挖掘的目的是数据挖掘的重要一步。挖掘的最后结果是不可预测的,但要探索的问题应https://maimai.cn/article/detail?fid=1405334297&efid=7lwV824VMzvaUfEhWMvd3A
10.如何用SPSS统计数据?(spss数据分析一般步骤)如何用SPSS统计数据? ( spss数据分析一般步骤 ) SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPOhttp://www.cnjit.net/spss/61720.html
11.数据分析的步骤一般包括()数据分析的步骤一般包括() A、数据预处理B、可视化呈现C、数据建模D、数据挖掘E、数据采集正确答案:数据预处理|可视化呈现|数据建模|数据挖掘|数据采集 点击查看答案进入小程序搜题你可能喜欢x、y坐标都是对数坐标系应该输入 点击查看答案进入小程序搜题https://m.ppkao.com/wangke/daan/ac3af600c48e47adafb07ffd552ec912
12.数据挖掘五步法数据挖掘的步骤有哪些? 所谓数据挖掘就是从海量的数据中,找到隐藏在数据里有价值的信息。因为这个数据是隐式的,因此想要挖掘出来并不简单。那么,如何进行数据挖掘呢?数据挖掘的步骤有哪些呢?一般来讲,数据挖掘需要经历数据收集、数据可视化、数据预处理、准备模型输入以及训练模型五大步骤,下面让我们来详细分析一下吧!https://blog.csdn.net/weixin_51689029/article/details/128333250
13.数据挖掘的基本步骤是什么?数据挖掘的基本步骤包括: 理解业务目标:首先要明确数据挖掘的目的是什么,是为了预测销售额、识别欺诈行为还是其他目标。只有明确了业务目标,才能有针对性地进行数据挖掘分析。 数据理解:收集相关数据,理解数据的含义、格式、质量等特征。这一步通常包括数据收集、数据描述性统计、数据可视化等方法,以便更好地理解数据。 https://www.mbalib.com/ask/question-1ff33c04b2a8f83d1aff9875a50d017f.html
14.数据挖掘的六个步骤有哪些帆软数字化转型知识库数据挖掘的六个步骤分别是:问题定义、数据收集与准备、数据清洗、数据转换与特征选择、模型建立与评估、结果解释与部署。其中问题定义是数据挖掘过程的首要步骤,直接影响整个项目的成功与否。问题定义涉及明确业务目标、研究目标和所需的数据类型。只有在问题定义清晰的情况下,后续的每一步骤才能有的放矢,确保数据挖掘的结https://www.fanruan.com/blog/article/594251/
15.数据挖掘的步骤包括什么数据挖掘是一个通过特定算法对大量数据进行处理和分析,以发现数据中的模式、趋势或关联性的过程。下面详细介绍数据挖掘的步骤包括什么? 1、数据收集 首先,需要收集与待挖掘主题相关的数据。可能涉及从各种来源(如数据库、文件、网络等)获取数据,并将其清洗、整合到一个统一的格式中。 https://www.pxwy.cn/news-id-81213.html
16.北京大学R语言教程(李东风)第41章:统计学习介绍也有数据挖掘(data mining),机器学习(machine learning)等称呼。 主要目的是用一些计算机算法从大量数据中发现知识。 方兴未艾的数据科学就以统计学习为重要支柱。 方法分为有监督(supervised)学习与无监督(unsupervised)学习。 无监督学习方法如聚类问题、主成分分析、异常点识别、购物篮问题等。 https://www.9crx.com/79366.html
17.数据挖掘的步骤(1)硬声是电子发烧友旗下广受电子工程师喜爱的短视频平台,推荐 数据挖掘的步骤(1) 视频给您,在硬声你可以学习知识技能、随时展示自己的作品和产品、分享自己的经验或方案、与同行畅快交流,无论你是学生、工程师、原厂、方案商、代理商、终端商上硬声APP就够了!https://www.elecfans.com/v/438296
18.什么是数据挖掘?为什么它如此重要?数据挖掘的步骤 数据挖掘的方法取决于所问问题的类型以及提供分析原材料的数据集或数据库的内容和组织。数据挖掘涉及的步骤包括: 理解问题 企业的决策者需要对他们应该从事的领域有一个总体的了解。他们应该知道需要探索的内部和外部数据类型,并对业务和所涉及的不同功能领域有深入的了解。 https://ai.qianjia.com/html/2023-03/27_400072.html