数据挖掘

======================第一章===========================

1.给出下列英文缩写或短语的中文名称和简单的含义

(1)DataMining数据挖掘:从大量数据中提取或者“挖掘”知识。

(2)Artificialintelligence人工智能:是研究开发用于模拟延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的术学科。

(4)Knowledgeengineering知识工程:人工智能在知识信息处理方面的发展,研究如何由计算机表示知识,进行问题的自动求解。

(5)Informationretrieval信息检索:指将信息按一定的方式组织和存储起来,并根据信息用户的需要找出有关的过程和技术。

(6)Datavisualization数据可视化:是关于数据之视觉表现形式的研究。

2.给出下列英文缩写或短语的中文名称和简单的含义:

(1)OLTP(on-linetransactionprocessing)联机事务处理:是推动和管理面向事务的应用程序的一类程序,典型地针对数据输入和恢复事务处理。

(2)OLAP(on-lineanalyticprocessing)联机分析处理:使分析人员,管理人员或执行人员能够从多角度对信息进行快速一致,交互地存取,从而获得对数据的更深入了解的一类软件技术。

(3)decisionsupport决策支持:为决策者提供分析问题,建立模型,模拟决策过程和方案的环境

(4)KDD(knowledgeDiscoveryindatabases)从数据集中识别出有效地、新颖的、潜在有用的,以及最终可以理解的模式的非平凡过程。

(5)transactiondatabase事务数据库:由一个文件组成,其中每个记录代表一个事务的集合

(6)distributeddatabase分布式数据库:是用计算机网络将物理上分散的多个数据库单元连接起来组成一个逻辑统一的数据库。

3.数据(data)、信息(information)和知识(knowledge)是人们认识和利用数据的三个不同阶段,数据挖掘技术是如何把它们有机的结合在一起的?

客观世界---(收集)---》数据---(分析)---》信息---(深入分析)---》知识---(决策与行动)---》客观世界。

8.从数据挖掘研究角度看如何理解数据、信息和知识的不同和联系?

数据时原材料他只是描述发生了什么事,并不能构成决策或行动的可靠基础。通过对数据进行分析找出其中关系,赋予数据以某种意义和关联,就形成所谓信息。信息虽给出了数据中一些有定义意义的东西,但它往往和人们需要完成的任务没有直接的关系,也还不能做为判断,决策和行动的依据,而所谓知识,可定义为信息块的一组逻辑联系其关系式通过上下文或过程的贴近度发现的。

9.简述数据挖掘技术将来的发展趋势

1)、形式化描述的语言

2)、可视化的数据挖掘过程

3)、web网络中数据挖掘的应用

4)、融合各种异构数据的挖掘技术

5)、处理的数据将会涉及到更多的数据类型

6)、交互式发现

7)、知识的维护更新

11、你认为应该如何来理解KDD和datamining的关系?说明你的理由?

在某些时候可以认为datamining就是KDD,但datamining所包含的范围相对比较小一点。Datamining简单地讲就是从大量数据中挖掘或抽取出知识,而KDD它是一个从大量数据中抽取挖掘出未知的,有价值的模式或规律等知识的复杂过程。

12.解释datamining理解为KDD整个过程的一个关键步骤的合理性?

都是利用智能方法挖掘数据模式或规律知识

=========================第二章====================

1.KDD是一个多步骤的处理过程,它一般包含哪些基本阶段?简述各阶段的功能。

KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理、数据挖掘以及模式评估等基本阶段。

(3)数据预处理阶段的功能:对前一阶段抽取的数据进行再加工,检查数据的完整性及数据的一致性。

(4)数据挖掘阶段的功能:运用选定的数据挖掘算法,从数据中提取出用户所需要的知识。

(5)模式评价阶段的功能:将KDD系统发现的知识以用户能了解的方式呈现,并且根据需要进行知识的评价。如果发现知识和用户挖掘的目标不一致,则重复以上阶段以最终获得可用知识。

5.阶梯处理过程模型是知识发现的基本模式,画出它的基本处理流程,并简要说明各阶段的任务。

图参考课本P43页图2-1KDD阶梯处理过程模型;

源数据—(数据选择)—>目标数据—(数据预处理)—>预处理后的数据—(数据缩减)—>缩减后的数据—(数据挖掘)—>模式—(模式解释与评估)—>知识各阶段任务:

(3)数据预处理:主要是对上一阶段产生的数据进行再加工,检查数据的完整性及数据一致性,对其中的噪音数据进行处理、对丢失的数据可以利用统计方法进行填补。对一些不适合于操作的数据进行必要的处理等。

THE END
1.数据挖掘的基本步骤和流程解析:深入洞察与策略实施在数据时代的浪潮中,数据挖掘技术已成为企业洞察市场、优化运营和驱动创新的利器。 它融合了统计学、机器学习、数据库管理和人工智能等领域的先进技术,旨在从海量数据中 提取有价值的信息。 本文将深入探讨数据挖掘的六个基本步骤,并详细解析每个步骤的操作要领、关键技术和实 https://blog.csdn.net/m0_67484548/article/details/142664830
2.什么是数据挖掘的流程?一步步带你掌握数据挖掘的完整过程7. 知识表示和应用 在模型评估之后,需要将挖掘出的知识以易于理解和使用的格式呈现,并将其应用于实际业务场景中。这一步骤的核心在于将复杂的分析结果转化为可操作的商业决策。例如,可以通过报告、图表或仪表板等形式向利益相关者展示分析结果,帮助他们做出更明智的决策。 https://www.cda.cn/view/204893.html
3.机器学习找不到创新点?三种特征选择的方法包你拿下顶会!文章介绍了一种新的特征选择框架shap-select,该框架通过在验证集上对目标变量与原始特征的SHAP值进行线性或逻辑回归,并根据回归系数的符号和显著性水平来实现高效的特征选择。在Kaggle信用卡欺诈数据集上的评估表明,shap-select在解释性、计算效率和性能方面均表现出色。 https://www.bilibili.com/read/cv40067807
4.数据挖掘基于数据挖掘技术的CRM应用腾讯云开发者社区三、客户关系管理应用数据挖掘的步骤 (一)需求分析 只有确定需求,才有分析和预测的目标,然后才能提取数据、选择方法,因此,需求分析是数据挖掘的基础条件。数据挖掘的实施过程也是围绕着这个目标进行的。在确定用户的需求后,应该明确所要解决的问题属于哪种应用类型,是属于关联分析、分类、聚类及预测,还是其他应用。应对https://cloud.tencent.com/developer/article/1044985
5.数据挖掘技术在客户关系管理中如何应用四、客户关系管理应用数据挖掘的步骤 1.需求分析 只有确定需求,才有分析和预测的目标,然后才能提取数据、选择方法,因此,需求分析是数据挖掘的基础条件。数据挖掘的实施过程也是围绕着这个目标进行的。在确定用户的需求后,应该明确所要解决的问题属于哪种应用类型,是属于关联分析、分类、聚类及预测,还是其他应用。应对现有https://www.wenshubang.com/xingzhengguanlibiyelunwen/151599.html
6.数据挖掘的步骤包括什么需要注意的是,数据挖掘是一个迭代的过程,每个步骤都可能需要根据实际情况进行调整和优化。此外,随着技术的发展和数据的不断增长,数据挖掘的方法和技术也在不断演进和改进。因此,在实际应用中,需要根据具体情况灵活运用各种技术和方法来满足不同的需求。 数据挖掘的步骤包括什么?数据挖掘是一种强大的工具,可以从海量数据https://www.pxwy.cn/news-id-81213.html
7.数据挖掘分析流程数据挖掘分析报告daleiwang的技术博客预先不知道目标数据的有关类的信息,需要以某种度量为标准将所有数据划分到各个族中,因此聚类分析又称无指导的学习。 客户细分在电信营销中的应用; 六、数据挖掘过程的一般步骤 数据挖掘的过程包括如下六步: 6.1 定义商业问题就是了解你的数据和业务问题,这是实施数据挖掘的基本前提,一个数据挖掘项目必须要有一个清晰https://blog.51cto.com/u_13633/9019208
8.数据挖掘的步骤有哪些?一旦模型通过评估,就可以将其部署到实际应用中。这一步骤涉及到将模型嵌入到业务流程中,确保其能够为决策和预测提供有用的信息。 三、基本方法 1. 数据预处理 在进行数据挖掘之前,数据预处理是至关重要的一环。这一步骤包括数据清洗、去噪声、处理缺失值等,旨在确保挖掘过程中使用的数据质量高、完整。 https://www.smartbi.com.cn/wiki/6291
9.数据挖掘(计算机科学)发现知识的方法可以是数字的、非数字的,也可以是归纳的。最终被发现的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。数据挖掘步骤 在实施数据挖掘之前,先制定采取什么样的步骤,每一步都做什么,达到什么样的目标是必要的,有了好的计划才能保证数据挖掘有条不紊地实施并取得成功。很多软件供应商和https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98/216477
10.空间数据挖掘认识及其思考AET摘要: 在这个大数据时代,空间数据正在从各个领域飞速累计。空间数据挖掘作为数据挖掘的一部分,现已成为人们研究空间数据的重点学科。主要介绍了空间数据挖掘的基本概念、一般步骤及其最新的挖掘方法,表达了对当前空间数据挖掘的看法。最后对未来空间数据挖掘的研究方向进行了更加深入的探讨。 http://www.chinaaet.com/article/3000015273
11.数据分析与挖掘11篇(全文)Web数据挖掘过程是一个完整的知识发现的过程,但与传统数据和数据仓库相比,Web上的信息是非结构化或半结构化的、动态的,并且是容易造成混淆的,所以很难直接以Web网页上的数据进行数据挖掘,而必须经过必要的数据处理。因此可以将Web数据挖掘分为确定业务对象、数据准备、数据挖掘、结果分析等四个步骤。 https://www.99xueshu.com/w/ikeyp687ycyz.html
12.数据挖掘的六个步骤有哪些帆软数字化转型知识库数据挖掘的六个步骤分别是:问题定义、数据收集与准备、数据清洗、数据转换与特征选择、模型建立与评估、结果解释与部署。其中问题定义是数据挖掘过程的首要步骤,直接影响整个项目的成功与否。问题定义涉及明确业务目标、研究目标和所需的数据类型。只有在问题定义清晰的情况下,后续的每一步骤才能有的放矢,确保数据挖掘的结https://www.fanruan.com/blog/article/594251/
13.高效实施数据挖掘的方法和步骤yuanye1014产生的结果是否易为商业用户所理解?如果不能,需要采取什么步骤以使结果便于读懂?该工具是否要求商业专家参与整个数据挖掘过程? ? 第六阶段:结果发布 数据挖掘过程可能很简单,如只是对商业问题给出一个建议,也可能很复杂,如应用一个应用程序向信息客户提供新知识。无论简单还是复杂,在结果发布阶段,都要用到该过程。http://blog.chinaunix.net/uid-64814-id-2690182.html
14.计算机科学与技术学院课程介绍课程描述:Web网站构建技术是计算机科学与技术专业专业选修课,是针对当前Internet的发展以及WWW应用的一门课程。通过本课程的学习,使用学生能掌握Web网站的基本概念、基本原理和构建的基本方法;通过课堂讲授、课程实验以及课程设计,使学生能利用一种基于Web的开发环境,掌握开发的基本步骤;了解Web数据安全;了解Web服务及其相关https://it.ouc.edu.cn/2021/1009/c21707a350061/page.htm
15.数据挖掘概念与方法(精选八篇)本文首次将形式概念中“紧致依赖”理论应用在空间数据挖掘中, 在一个GIS实例中运用此理论找出关联规则, 并且对其在空间数据挖掘中的应用做出了一定的改进, 提出了基于Apri-ori剪枝的“紧致依赖”约减方法, 并证明了方法的正确性和优越性。运用此方法, 不仅可以无遗漏地找出所有满足支持度阈值并且置信度为1 的强关联https://www.360wenmi.com/f/cnkey6cf58u0.html
16.数据挖掘的基本步骤是什么?模型部署:将评估通过的模型部署到实际业务中,进行预测、分类等工作。 在实际应用中,数据挖掘的步骤可能会有所调整和扩展,但以上步骤是数据挖掘的基本流程。 关键字:数据挖掘、步骤、业务目标、数据理解、数据准备、建模、模型评估、模型部署0 相关课程 精英成长第4课:创新思维--问题意识创新破局 邹亮 ¥ 99.00 https://www.mbalib.com/ask/question-1ff33c04b2a8f83d1aff9875a50d017f.html
17.什么是数据挖掘?为什么它如此重要?数据挖掘的步骤 数据挖掘的方法取决于所问问题的类型以及提供分析原材料的数据集或数据库的内容和组织。数据挖掘涉及的步骤包括: 理解问题 企业的决策者需要对他们应该从事的领域有一个总体的了解。他们应该知道需要探索的内部和外部数据类型,并对业务和所涉及的不同功能领域有深入的了解。 https://ai.qianjia.com/html/2023-03/27_400072.html