高内涵筛选技术的原理及其在生态毒理学的应用

随着现代工业进步,人类合成、使用和间接产生的化合物的数量和种类在不断增长,其中包括了化工原料、阻燃剂、农药、增塑剂、食品添加剂、药物、天然化合物及衍生物、饮用水消毒副产物和化学合成副产物等多个类别[1-2]。然而由于在对化合物毒性作用方面认识的不足,绝大多数的化合物缺乏有效监管,部分化合物因此能够以直接或间接的方式进入环境,成为环境污染物。事实上,根据美国国家毒理规划处(NTP)生物分子筛选部负责人Tice等[2]在2013年的估计,至少有数万种存在于环境中的污染物仍然缺乏足够的毒理学数据来预测其对人类和生态系统的影响。所以在生态毒理学领域,对这些化合物展开环境危害性和毒理特性鉴定,进行风险管理显得尤为必要而迫切。为此,美国环境保护局(EPA)在2011年已开始推进新一代的健康风险评估(NexGen)项目,NexGen项目强调了体外高通量毒性筛选在揭示化合物毒性作用机制方面的重要性[3],而该项目的实施对中国的毒理学发展具有借鉴意义。

模式动物的活体毒性测试由于通量低、成本高和周期长已不能满足当前巨量化合物毒性评价的需要,为了应对毒理学领域所面临的新挑战,2007年加拿大国家研究委员会(NRC)的“21世纪毒性测试:一种远见与策略”报告[4]为毒理学领域新世纪的发展奠定了基石。该报告不仅提出了21世纪毒性测试应当从活体生物检测向高通量的离体检测转变,更期望采用离体生物检测去揭示化合物毒性作用机制,从而使在这个框架下所进行的风险科学具有充分的科学依据。毒性作用机制的研究是以毒性途径紊乱(perturbationsoftoxicitypathways)为观察指标[4],这一特点与传统离体或活体生物检测中,以死亡、突变、肿瘤形成等细胞或动物终点事件(apicalendpoints)为观察指标所不同。而所谓的毒性通路在NRC的报告中被定义为:正常细胞受外来化合物干扰后所产生的,能导致损害健康效应的细胞内应答通路[4]。为了对这一观察指标进行全面的衡量,新的高通量生物检测方法仍然有待进一步的发展。

高内涵筛选(HighContentScreening,HCS)是新型的高通量化合物毒性检测方法,能够在保持细胞结构和功能完整的基础上,运用多种荧光标记物标记细胞,自动化地对细胞内多靶点的复杂表型(phenotype)进行筛选[5-7]。不同筛选条件下产生的表型特征既包括了完整细胞所表现的凋亡、坏死、增殖、迁移等形式,还包括了细胞内的细胞器损伤、信号转导、代谢途径以及遗传损伤等[8]。不同于传统离体生物检测中以细胞内单靶点的作用为检测端点,HCS以高内涵(highcontent)的方式呈现化合物暴露下所产生的多维表型信息[9],从而系统的对化合物的毒性作用机制展开研究[10],更好的对化学污染物进行风险评估。

当前随着HCS设备及分析技术的长足的进步,HCS技术已在毒理学、药理学和医学领域有了极大的发展,在生态毒理学领域,HCS的应用亦在积极的展开。本文系统介绍了HCS技术原理,在此基础上总结了HCS在当前生态毒理学领域的应用,并对其发展前景和所面临的挑战进行了展望。

1.1HCS概念

光学显微镜设备在自动化程度和图像收集速率的提高促进了HCS的发展,研究人员已可以利用图像分析方法在单细胞水平展开研究。因为HCS以完整细胞为研究对象,细胞结构和功能完整,真实反应了细胞内的毒性作用机制[11]。细胞荧光图像是HCS获取数据的主要手段,特异性荧光探针或荧光蛋白的采用使细胞内不同结构被多种荧光信号同时标记,从而反应细胞表型。能够被HCS检测得到的表型变化除包括标记点的荧光强度改变外,还有细胞或细胞内结构形态变化。图像分析技术使得表型变化的定量分析成为可能,每个细胞的荧光和形态学特征得以被聚类和分类等数据挖掘手段所整合分析,从而转换为可解释的多维细胞表型信息,这种多生物学信息呈现方式拓宽了我们对化合物毒性作用机制的理解和认识。

1.2HCS实验流程

1.3样品制备和暴露

常规的HCS过程同样依赖于实验员的操作,需要进行细胞培养、化合物暴露和细胞染色等一系列样品前处理过程,这在大规模高通量化合物的HCS中会造成了2方面的影响,一方面384、1536等多孔板的应用增加了实验员的操作难度;另一方面,实验员在操作的过程中容易引入人为误差,整个实验的质量控制难以保证[13]。因此在大规模高通量的HCS中,样品制备和暴露更依赖于自动化的液体处理设备,尽管当前自动化液体处理设备价格较高,但其引入使得实验的整体精度、重复性和可靠性被极大的增强,并满足了大部分液体处理的需要。目前,已有多个生物公司,如Tecan,PerkinElmer等都开发了自己的液体处理设备。

1.4图像获取

表1高内涵筛选平台

1.5图像分析与数据挖掘

1.6生物数据库系统

Keefer等估计,一个HCS平台每年数据产出量在500GB~6TB左右[10]。如此高的数据产出,不仅要求在数据分析过程中采用并行甚至集群计算,数据的储存和调用也依赖于服务器。但是,几乎每个HCS设备提供商都以各自格式储存数据,这导致显微实验中图像格式冗余,制约了HCS数据库的管理和维护[12]。OME以增强HCS分析软件之间的互通性为目的而开发的“Bio-format”已得到各个软硬件的广泛支持,使HCS中统一的数据管理成为可能[24]。HCS的数据库系统除了有传统的商业数据库Oracle[25],MDCStoreTM和ColumbusTM等,HCS开源数据库SIDB[26]和OME的OMERO[27]也有了广泛的应用。

表2HCS主要的应用领域和研究对象[28]

2.1遗传毒性

遗传毒性用于描述某化合物能够直接或间接的方式引起DNA或染色体损伤的性质,具有这种性质的化合物被称为遗传毒物[29]。工业污染使众多潜在的遗传毒物进入环境介质,而遗传毒物对生物胚胎细胞和体细胞的损害可能引起多种疾病,包括了新生儿畸形和癌症生成等[30]。因此为了对这些化合物进行监管,需要对其遗传毒性定量测定,而相比于传统遗传毒性评价方法,HCS在具有较高的灵敏度和特异性同时,能够高通量的检测多个遗传毒性指标,因此应用广泛。

2.1.1细胞周期阻滞

2.1.2特定DNA损伤检测

DNA损伤具有多种类别,包括了氧化性DNA损伤、DNA加合物、DNA甲基化、双链DNA损伤等[29],其中8-OHdG[36]、DNA甲基化结合蛋白[37]和磷酸化组蛋白H2AX(γH2AX)[38]分别是氧化性DNA损伤、DNA甲基化和双链DNA损伤特异性标志物。采用免疫荧光方法,能标记特定的DNA损伤标志物,并通过HCS高通量来对化合物DNA损伤类型进行判定。Barber[39]和Kim等[40]以抗体标记γH2AX,并采用HCS来对生成的γH2AXfoci进行定量分析,通过该方法可以对遗传毒物的作用机制有一定了解。

2.1.3微核试验

微核实验是在细胞核水平对遗传毒性进行评价,微核的生成存在2种机制,一种是由遗传毒物干扰细胞分裂器所引起的[41],这使得生成的绝大部分微核中含有着丝点或着丝粒,这类遗传毒物被称为非整倍体断裂剂,能间接的造成遗传毒性。另一种微核生成是由高水平的DNA损伤引起的[32],这种机制与CyclinB1浓度含量有关[42]。微核生成前,细胞核内已发生严重的基因突变和染色体损伤断裂,然而过低的CyclinB1浓度使得纺锤体组装检验点(spindleassemblycheckpoint,SAC)并不会被激活,因此DNA严重损伤的细胞被迅速退出M期,导致部分脱核的染色体形成微核[42-45]。基于这一机制生成微核的遗传毒物被称为染色体断裂剂[41],其能直接的对DNA造成高水平的损伤。这2种微核生成的机制是细胞微核实验的基础。

2.2器官毒性评价

2.3神经毒性评价

2.4化合物作用机制

当前,HCS在对海量化合物作用机制(modeofaction,MoA)的研究已经极大的促进了药物筛选的发展[5],尽管药物筛查和生态毒理学这2个领域中对化合物的毒性测试的出发点和目的性都不尽相同,但是药筛过程中利用HCS展开海量化合物的MoA研究方法对生态毒理学中HCS的应用提供了有益的参考。药物筛查的目的是在药物研发的初期,在大型化合物文库(chemicallibrary)中寻找针对特定药物作用靶点(target)具有生物活性的化合物。而对于同一靶点有效的化合物也可能会发生脱靶效应(off-targeteffect),即化合物会同时对特定靶点以外的体内生物大分子结合,这可能导致该化合物在药物开发后期被发现具有严重的副作用而造成巨大经济损失[60-62]。正因如此在药物筛查的过程中应尽早发现化合物的脱靶效应,所以需要在这一过程中对化合物的MoA展开研究[63]。尽管生物组学技术的发展,如基因芯片、转录组测序等已能够有效的寻找化合物的MoA,但是高昂的成本使其难以在大规模的药物筛查中展开,而利用HCS对产生的细胞多维表型进行挖掘,能够了解化合物的MoA,寻找到目标化合物[33]。

2.5RNA干扰和cDNA过表达

RNA干扰[70]和cDNA过表达[71]技术的应用使我们得以以“lossoffuction”和“gainoffunction”的遗传学手段来研究化合物的MoA,在药理学领域提出了化学遗传学(chemicalgenetic)的概念[72],其目的是对化合物库中的小分子化合物进行筛查来研究这些化合物对生物大分子和信号转导通路的影响,也是为了发现新的药物作用靶点。HCS能够同时对基因表达变化和化合物处理所引起的细胞表型的微小改变做出响应,化学遗传学中通常采用RNA干扰文库和化合物文库并行HCS(parallelHCS)[66,73],来探索两者细胞表型之间的关系。两种文库中筛选产生的细胞表型首先被聚类,在同一个聚类类别中,筛选出的化合物可能和这个类别下所沉默的基因导致相同的表型,因此可以认为这些化合物能够干扰该沉默基因原本的表达,从而找到潜在的药物靶标和生物标记物。

在生态毒理学领域,更多的应用是通过RNA干扰和cDNA过表达技术来构建基因低表达和过表达系统,HCS也能灵敏的检测到构建前后的表型差异。例如,尽管HepG2细胞被广泛的应用于肝毒性检测,但是多种CYPs在这种细胞模型中表达量较低[74],不利于模拟体内肝脏的代谢功能,Tolosa等[75]利用cDNA过表达技术在HepG2细胞中过表达多个CYPs,该细胞模型与原代肝细胞中CYPs表达量相类似,因此显著提高了HCS对肝毒性检测的灵敏度。

当前HCS已发展到一个新的阶段,性能日益强大的设备拓展了HCS在生态毒理学的应用,但HCS并不仅仅依赖于设备本身,更需要利用海量数据去回答亟待解决的生物学问题,因此数据库系统和数据挖掘已成为了HCS应用所要着力加强的地方。

在面对从活体向离体毒性实验转换的过程中出现的新问题,一些新的生物学技术也应当在HCS中得到进一步的应用。例如三维细胞培养技术,因为尽管单层细胞培养具有众多优点,但是单层细胞不能很好的模拟细胞在体内真实的生理状态,缺乏细胞间通讯机制,培养周期短且只适合单种细胞类型细胞培养[76]。在药物毒理学领域,已有多项证据表明了这种差异性对特定器官毒性评价时会产生不利影响[77]。例如曲伐沙星(trovafloxacin)在临床使用过程中首先被发现有很强的肝毒性[78],而在对人源肝细胞(hepatocyte)药物筛查期间并没有明显的毒性作用[79],最近的研究表明,可能是体内肝脏细胞与单层细胞培养模型间的差异造成的[80]。而三维细胞培养模型[81]能够部分弥补单层细胞培养模型的不足,模拟更真实的体内细胞生长环境。得益于HCS设备性能的提高,利用HCS基于三维培养细胞对化合物进行毒性评价也展开了探索性的研究[82]。

【摘要】大量存在于环境中的有毒污染物仍然缺乏足够的毒理学数据来对其进行有效的监管,为了满足海量化合物毒性评价的需要,基于离体生物测试的高通量毒性筛选方法在近些年得到了迅猛的发展。高内涵筛选技术是新型的高通量化合物毒性筛选方法,该方法最显著的特点是能够在保持细胞结构和功能完整的基础上同时获取多种毒性指标。因此在简介高内涵筛选技术原理的基础上,综述了其在生态毒理学领域已有的应用,并针对性地对高内涵筛选技术的发展和挑战进行了展望。

【期刊名称】生态毒理学报,2015(010)002

【关键词】高内涵筛选;高通量筛选;离体毒性测试;生态毒理学

THE END
1.数据挖掘概念(AnalysisServices该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: 您在查找什么?您要尝试找到什么类型的关系? 您要尝试解决的问题是否反映了业务策略或流程? 您要通过数据挖掘模型进行预测,还是仅仅查找受关注的模式和关联? https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.数据挖掘的分析方法可以划分为关联分析序列模式分析分类分析和数据挖掘是从大量数据中提取有用信息的方法,主要分为四种分析方式:关联分析、序列模式分析、分类分析和聚类分析。在本指南中,我们将详细介绍这四种方法的实现过程,并提供相应的代码示例。 数据挖掘流程 首先,我们需要明确数据挖掘的基本流程,如下表所示: 流程图 https://blog.51cto.com/u_16213297/12863680
3.简述数据挖掘的主要步骤。答数据挖掘的主要步骤如下:①数据准备。对数据进行集成,数据选择和预分析。即从操作型环境中提取并集成数据,解决语义二义性问题,消除脏数据,使数据范围缩小,数据挖掘质量得到提高。②数据挖掘。利用数据挖掘器(data mining processor)中的各种数据挖掘方法,从大量的数据中识别出潜在的、有效的、新颖的、具有潜在价值的https://easylearn.baidu.com/edu-page/tiangong/questiondetail?id=1730370113065387683&fr=search
4.数据挖掘的六大过程数据挖掘的六大过程通常包括:数据清洗、数据集成、数据选择、数据变换、数据挖掘、模式评估。 这六个过程构成了一个系统而复杂的工作流程,旨在从大量数据中提取有用的模式和知识,支持决策和预测。 以下是每个过程的详细解释: 一、数据清洗 定义:数据清洗是对原始数据进行预处理的过程,旨在解决数据缺失、不一致、噪声等https://www.ai-indeed.com/encyclopedia/10656.html
5.数据挖掘的基本步骤和流程解析请阐述数据挖掘的基本过程和步骤下面用一个具体的例子更详细的解释数据挖掘流程(具体代码用python语言实现)。 在这个例子中,我们将使用一个假设的电商数据集来进行用户购买行为的预测。 1. 明确目标 我们的目标是预测用户是否会购买某种商品。这属于二分类问题。 2. 数据准备 数据收集 https://blog.csdn.net/m0_67484548/article/details/142665300
6.数据挖掘流程范文12篇(全文)数据挖掘流程 第1篇 1 数据挖掘的原理 数据挖掘是通过分析每个数据, 从大量数据中寻找其规律的技术, 其特点如图1。数据库是资源信息的存储地, 充分利用数据库资源对办公自动化系统有着重要的作用。由于计算机应用技术条件有限, 企业在数据挖掘地方面的操作存在不足, 导致数据资源浪费而影响了使用效率。数据挖掘技术本https://www.99xueshu.com/w/ikeyo1a9ca2z.html
7.商战数据挖掘:你需要了解的数据科学与分析思维数据科学的一条重要原则是,数据挖掘的流程可以分解为几个通俗易懂的环节。有些环节涉及信息技术的应用,如数据中模式的自动发现和评估,而有些则主要依赖数据分析师的创意、常识和商业知识。理解数据挖掘的整个过程,有助于组织数据挖掘项目,使它们更接近系统性的分析,而不是凭借运气和个人智慧的冒险行为。 https://www.ituring.com.cn/book/tupubarticle/28952
8.数据挖掘的挖掘流程是什么帆软数字化转型知识库数据挖掘的挖掘流程包括:数据准备、数据清洗、数据集成、数据变换、数据挖掘、模式评估、知识表示。其中,数据准备是整个流程的基础,它包括数据收集和初步数据探索。数据收集是指从各种数据源获取所需数据,这些数据源可以是数据库、数据仓库、文件系统以及实时数据流。初步数据探索则是对收集到的数据进行基本的统计分析和可https://www.fanruan.com/blog/article/593346/
9.erp系统主要流程包括哪些erp系统可以通过数据分析和报表功能,帮助企业进行数据挖掘和分析,提供决策支持。通过erp系统,企业可以更加科学地进行决策,提高经营管理的水平。 总的来说,erp系统的主要流程涵盖了企业内外各个方面的管理和协调,能够全面优化企业的管理效率和运营效果。 △某业某财产品截图https://h.chanjet.com/ask/a015c25edb9ee.html
10.系统项目管理师(第4版)思维导图模板相当于工业互联网的“操作系统”,它有四个主要作用: 数据汇聚。网络层面采集的多源、异构、海量数据,传输至工业互联网平台,为深度分析和应用提供基础。 建模分析。提供大数据、人工智能分析的算法模型和物理、化学等各类仿真工具,结合数字孪生、 工业智能等技术,对海量数据挖掘分析, 实现数据驱动的科学决策和智能应用。https://www.processon.com/view/654c455f8f11b40fe56ece43
11.数据挖掘的流程包含哪些步骤?数据挖掘的流程包含哪些步骤? 数据挖掘是从大量数据中挖掘出有用的信息和模式的过程。它涉及多个步骤,从数据收集到模型评估。以下是数据挖掘的常见流程步骤: 理解业务目标:在进行数据挖掘之前,需要明确业务目标和问题。确定要解决的问题以及所需的结果有助于指导整个流程。https://www.cda.cn/view/202981.html
12.一文搞懂!商业数据分析全流程CRISP-DM全称为CRoss Industry Standard Process for Data Mining(跨行业数据挖掘标准流程),如图1.2所示,这个流程模型将整个数据挖掘过程划分为六个主要阶段:业务理解、数据理解、数据准备、模型建立、模型评估和结果部署。 CRISP-DM强调,数据挖掘是一个迭代和探索的过程,六个步骤并不是线性的,而是根据实际情况灵活进行https://www.niaogebiji.com/article-606353-1.html
13.关于数据挖掘的基本流程关于数据挖掘的基本流程 人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。 经管之家是国内活跃的在线教育咨询平台! 经管之家新媒体交易平台 提供"微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点https://bbs.pinggu.org/jg/kaoyankaobo_kaoyan_5397901_1.html
14.网络数据挖掘的方法及装置存储介质及电子设备与流程1.本公开涉及网络数据安全技术领域,尤其涉及一种网络数据挖掘的方法及装置、存储介质及电子设备。 背景技术: 2.对重要数据的关键性识别是网络数据安全技术的基础,在相关技术中,一般是通过匹配关键数据库或关键数据组合数据库,并通过对不同的关键数据或数据组合单一权重来实现关键性识别。但是,这种方法容易导致错误接受率http://mip.xjishu.com/zhuanli/55/202210988582.html
15.大数据处理的基本流程腾讯云开发者社区大数据处理流程主要包括数据收集、数据预处理、数据存储、数据处理与分析、数据展示/数据可视化、数据应用等环节,其中数据质量贯穿于整个大数据流程,每一个数据处理环节都会对大数据质量产生影响作用。通常,一个好的大数据产品要有大量的数据规模、快速的数据处理、精确的数据分析与预测、优秀的可视化图表以及简练易懂的结https://cloud.tencent.com/developer/article/1443863
16.七步走纯R代码通过数据挖掘复现一篇实验文章(第1到6步)文章里面是自己测了8个TNBC病人的转录组然后分析,但是我们有TCGA数据库,所以可以复现,这就是为什么标题是七步走纯R代码通过数据挖掘复现一篇实验文章! 主要流程: 下载数据 数据清洗 质量控制 差异分析 注释mRNA,lncRNA 富集分析 WGCNA(因为排版限制,内容见本期第3条推文) Step1. 数据下载 这里参考去年的学徒数据https://www.360doc.cn/article/62751463_858036979.html
17.企业实习调研报告范文(通用6篇)各种舆情监控系统工作流程基本相同,主要包括以下几条: (1)网络信息采集系统从互联网上采集新闻、论坛、博客、评论等舆情信息,存储到采集信息数据库中。 (2)舆情分析引擎负责对采集信息进行清洗、智能研判和加工,分析结果保存在舆情成果库中。舆情分析引擎依赖于智能分析技术和舆情知识库。 https://www.yjbys.com/diaoyanbaogao/2316664.html