数据挖掘模型和挖掘步骤技术方案

随着中国电信的改革重组,中国通信业取得了跨越式的发展,成为国民经济中发展速度最快的行业之一,中国通信业总规模现已在世界排名第一。与此同时,中国通信市场竞争也日趋激烈。通信运营商的经营观念逐渐从"技术质量第一"向"服务客户第一"转化。以前的营销模式已经无法满足客户的多样化、层次化、个性化的需求。长期以来,通信单位大量详尽的业务数据也只是被简单地应用在各种业务系统中,没有被更有效地开发利用。如何利用这些数据进一步拓宽通信业务,促进通信业务发展,从而为通信业提供决策支持服务,已经成为各个通信单位的当务之急。

客户细分模型和挖掘算法选择

构建客户分类模型需要用到第2章所介绍的一些技术。其中聚类技术就是其中之一。在前面的章节中我们曾了解到聚类和分类有着很大的区别:分类时,我们事先选择一些属性作为分类标准,通信企业总是会将重要的、有影响力的属性作为分类的依据;而在实际应用当中,通信企业事先根本不知道哪些属性会起到作用。而找到那些起关键作用的属性是聚类技术的任务之一。在通信客户分析中,聚类分析能够帮助我们发现特征迥异的不同客户群和对客户分类起关键作用的指标变量,并辅助运营商对各客户类别的特征进行深刻观察。通信客户从营销属性方面分为三类:普通客户、价值客户和黄金客户,其中普通客户消费行为有较大的随机性,分布较广,规律难寻,比较适于聚类分析。

本数据挖掘实例采用通话行为、数据业务使用情况等作为客户分类变量,把通信行为相似的人群聚为一组。数据挖掘方法论选用CRISP-DM(Cross-IndustryProcessforDataMining)过程模型。即交叉行业数据挖掘过程标准。它从数据挖掘技术应用的角度来划分挖掘任务,将数据挖掘技术和实际应用紧密结合。CRISP-DM过程模型的主要步骤有商业理解、数据理解、数据准备、建立模型、数据挖掘、评价和实施以及结果发布,如图3-9所示。该过程的各个环节按顺序进行,但需要不断地循环往复进行数据探索和模型的调优。这里为了简化说明问题,先不考虑循环往复的探索和调优过程,直接顺序考察各个环节。

数据挖掘模型和挖掘步骤

在各种硬件条件和软件条件都具备的情况下,就可以开始进行挖掘的工作了。

1.数据准备

数据准备过程如下:

(1)确定项目目标,制定挖掘计划。

(2)分析变量的获取。

(3)数据收集和获取。(4)数据集成。

依据CRISP-DM流程,第一要确定项目目标,之后制定挖掘计划。首先必须明确项目的商业目标,这个目标应该是适于用选取的聚类分析方法来达到的。所定义的客户细分的商业目标是"对某地方数十万普通客户,从客户行为的角度进行客户分类,以了解不同客户群的消费行为特征,为发展新业务、原有客户挽留、对其他通信公司用户争夺的针对性策略的制订提供依据,并实现企业稳定现有客户量、提高客户增长量的战略目标"。

客户的消费行为和需求通过调查问卷以及访谈的方式来实现。

客户的通信行为以及需求特征类别见表3-1。

表3-1客户行为特征信息表

客户的通信行为

客户的需求特征类别

短消息使用次数

移动梦网使用次数

GPRS数据流量

方便性及信息实时性的需求

IP长途使用次数

优惠时段通话次数

套餐定制和使用次数

拨打10086次数

对资费的敏感程度

本地、长途、漫游呼叫时长

本地、长途、漫游呼叫次数

工作/休息时段、优惠/非优惠时段)

呼叫类型(主叫、被叫、呼叫转移)

对通话的多层次需求

服务种类

对个性化服务的需求程度

基于客户需求和上述行为特征信息表,定义了几组细分变量,d_代表时常,t_代表频率,见表3-2。在这里只列出通话形式和通话比例表。

表3-2细分变量表(简表)

通话形式

市话

d_local

t_local

省内长途

d_toll_InProvince

t_toll_InProvince

跨省长途

d_toll_BetweenProvince

t_toll_BetweenProvince

国际长途

d_toll_htm

t_toll_htm

通话比例

网内通话

d_mob_Ttl

t_mob_Ttl

联通通话

d_uni_Ttl

t_uni_Ttl

小灵通通话

d_phs_Ttl

t_phs_Ttl

d_fix_Ttl

t_fix_Ttl

2.数据准备

数据准备包括所有从原始的未加工的数据构造最终分析数据集的活动,是数据挖掘过程中最耗时的环节,甚至要占据整个数据挖掘项目一半以上的工作量。数据准备工作的流程如图3-11所示。

3.建立模型

在生成最终的数据集后,就可以在此基础上建立模型来进行聚类分析了。建立模型阶段主要是选择和应用各种建模技术,同时对它们的参数进行校准以达到最优值。在明确建模技术和算法后需要确定模型参数和输入变量。模型参数包括类的个数和最大迭代步数等。

不同的技术方案产生的模型结果有很大不同,而且模型结果的可理解性也存在较大差异。另外,对结果的分析和描述也很关键,不恰当的描述会造成误导。需要指出的是,不同的商业问题和不同的数据分布属性会影响模型建立与调整的策略,而且在建模过程中还会使用多种近似算法来简化模型的优化过程。因此还需要业务专家参与调整策略的制定,以避免不适当的优化造成业务信息丢失。

建立模型是一个螺旋上升,不断优化的过程,在每一次聚类结束后,需要判断聚类结果在业务上是否有意义,其各群特征是否明显。如果结果不理想,则需要调整聚类模型,对模型进行优化,称之为聚类优化。聚类优化可通过调整聚类个数及调整聚类变量输入来实现,也可以通过多次运行,选择满意的结果。通常可以依据以下原则判断聚类结果是否理想:类间特征差异是否明显;群内特征是否相似;聚类结果是否易于管理及是否具有业务指导意义。

4.模型评估

通过上面的处理,就会得到一系列的分析结果和模式,它们是对目标问题多侧面的描述,这时需要对它们进行验证和评价,以得到合理的,完备的决策信息。对产生的模型结果需要进行对比验证、准确度验证、支持度验证等检验以确定模型的价值。在这个阶段需要引入更多层面和背景的用户进行测试和验证,通过对几种模型的综合比较,产生最后的优化模型。

模型评估阶段需要对数据挖掘过程进行一次全面的回顾,从而决定是否存在重要的因素或任务由于某些原因而被忽视,此阶段关键目的是决定是否还存在一些重要的商业问题仍未得到充分的考虑。验证模型是处理过程中的关键步骤,可以确定是否成功地进行了前面的步骤。模型的验证需要利用未参与建模的数据进行,这样才能得到比较准确的结果。可以采用的方法有直接使用原来建立模型的样本数据进行检验,或另找一批数据对其进行检验,也可以在实际运行中取出新的数据进行检验。检验的方法是对已知客户状态的数据利用模型进行挖掘,并将挖掘结果与实际情况进行比较。在此步骤中若发现模型不够优化,还需要回到前面的步骤进行调整。

THE END
1.数据挖掘概念(AnalysisServices与以下关系图的突出显示相同,数据挖掘过程的第一步就是明确定义业务问题,并考虑解答该问题的方法。 该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: 您在查找什么?您要尝试找到什么类型的关系? https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.数据挖掘的分析方法可以划分为关联分析序列模式分析分类分析和数据挖掘是从大量数据中提取有用信息的方法,主要分为四种分析方式:关联分析、序列模式分析、分类分析和聚类分析。在本指南中,我们将详细介绍这四种方法的实现过程,并提供相应的代码示例。 数据挖掘流程 首先,我们需要明确数据挖掘的基本流程,如下表所示: 流程图 https://blog.51cto.com/u_16213297/12863680
3.数据挖掘基础知识解析:关联规则发现与分类算法评价标准详解1. 一家超市研究了销售记录数据,发现购买啤酒的人很可能也会购买尿布。这属于什么类型的数据挖掘问题? (一个) A.关联规则发现 B. 聚类 三、分类 D.自然语言处理 2. 哪两个分类算法的评价标准对应于以下两个描述? (一个) (a) 警察抓小偷,描述被警察抓到的人有多少是小偷的标准。 http://www.yl101.com/detail/id/87990.html
4.数据挖掘数据挖掘面试题汇总测测你的专业能力是否过关1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D.自然语言处理 2. 以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 https://cloud.tencent.com/developer/article/1045567
5.数据挖掘研究(精选十篇)数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程, 这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据, 并从中发现隐藏的关系和模式, 进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。 https://www.360wenmi.com/f/cnkey7ouwjk5.html
6.python数据挖掘算法的过程详解python这篇文章主要介绍了python 数据挖掘算法,首先给大家介绍了数据挖掘的过程,基于sklearn主要的算法模型讲解,给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下+ 目录 1、首先简述数据挖掘的过程 第一步:数据选择 可以通过业务原始数据、公开的数据集、也可通过爬虫的方式获取。 第二https://www.jb51.net/article/238548.htm
7.数据挖掘的过程和方法数据挖掘的过程和方法 我折腾了好久数据挖掘这事儿,总算找到点门道。说实话,一开始我也是瞎摸索。 我先跟你说啊,数据挖掘嘛,第一步得确定目标。这就好比你要去旅行,你得先知道你想去哪对吧。我之前就没整明白这个,随便找了些数据就开始挖,结果挖出来的东西根本没什么用,白忙活一场。所以说确定好你要挖掘https://wenku.baidu.com/view/7f1168947075a417866fb84ae45c3b3567ecddb0.html
8.好书推荐《数据挖掘技巧》数据挖掘一般是从大量的数据中通过计算机算法,去搜索隐藏于其中信息的过程。用通俗的话说,就是面临大量的数据,使用数据挖掘工具“探勘”一遍之前,审计人员不一定有明确的目标,挖掘出来的结果也不一定在审计人员的预料之中。数据挖掘作为一种新的计算机审计方法,能够辅助审计人https://mp.weixin.qq.com/s?__biz=MzU0ODk2NjA0Nw==&mid=2247509056&idx=3&sn=efa3fad8b2f29bc4520c0acc7354b793&chksm=fbb5ffb0ccc276a6cbbf6d12458f702a0a731627617b65747658b89c3bbcd90cde9b3f9a9192&scene=27
9.数据挖掘包括()等处理过程数据挖掘包括()等处理过程A.数据准备B.数据挖掘C.模式模型的评估与解释D.信息巩固与应用的答案是什么.用刷刷题APP,拍照搜索答疑.刷刷题(shuashuati.com)是专业的大学职业搜题找答案,刷题练习的工具.一键将文档转化为在线题库手机刷题,以提高学习效率,是学习的生产力工具https://www.shuashuati.com/ti/20ad9e3f8beb42a59c2102cbe09f96f0.html
10.数据分析报告(精选15篇)⑤假设数据模型。 ⑥ 实际数据挖掘工作(data mining)。 ⑦ 测试和验证挖掘结果(testing and verfication)。 ⑧ 解释和应用(interpretation and use)。 由上述步骤可看出,数据挖掘牵涉了大量的准备工作与规划工作,事实上许多专家都认为整套数据挖掘的过程中,有80%的时间和精力是花费在数据预处理阶段,其中包括数据的净化https://www.ruiwen.com/fenxibaogao/8204699.html
11.数据分析报告范文(精选10篇)由上述步骤可看出,数据挖掘牵涉了大量的准备工作与规划工作,事实上许多专家都认为整套数据挖掘的过程中,有80%的时间和精力是花费在数据预处理阶段,其中包括数据的净化、数据格式转换、变量整合,以及数据表的链接。可见,在进行数据挖掘技术的分析之前,还有许多准备工作要完成。 https://mip.wenshubang.com/baogao/155767.html
12.校园网数据中心论文12篇(全文)总之,随着云计算和其他技术迅猛发展,数据中心技术必须克服即将出现的所有挑战,数据中心基础设施也需要不停迭代,数据中心优化的四个关键要素分别是:人员、资源、技术和环境。每个要素通过关键指标反映运行维护服务的条件和能力,将业务导向放在首位,就是对人员、资源、技术和过程这四个关键要素的提升,从而有效实现云计算运维https://www.99xueshu.com/w/ikeyjaq7nr4o.html
13.数据挖掘教程:什么是数据挖掘?技术,工艺数据挖掘”的英文缩写是?数据挖掘是从庞大的数据集中寻找潜在有用模式的过程。它是一种多学科技能,使用机器学习,统计学和AI来提取信息以评估未来事件的概率。从数据挖掘中获得的见解用于营销,欺诈检测,科学发现等。 数据挖掘就是要发现数据之间隐藏的、未被怀疑的、以前未知但有效的关系。数据挖掘也称为数据中的知识发现(KDD),知识提取,数据https://blog.csdn.net/qq_22182989/article/details/125719155
14.基于MapReduce的增量数据挖掘研究AET摘要: 频繁项集挖掘是数据挖掘过程中的重要部分,传统数据挖掘算法中常用Apriori算法和FP增长算法来挖掘频繁项集。在实际应用中,传统算法往往不能用于频繁更新的数据库,采用IMBT数据结构能从不断更新的数据库中挖掘频繁项集,但是这将导致存储空间不足和运行效率低下的问题。基于MapReduce的增量数据挖掘能够有效解决这些http://www.chinaaet.com/article/218164
15.软考高级——信息系统项目管理师(第4版)思维导图模板数字化管理。数字化管理是企业通过打通核心数据链,贯通制造全场景、全过程,基于数据的广泛汇聚、集成优化和价值挖掘, T化、剧新门千里北业战略决策、产品研发、生产制造、经营管理、市场服务等业务活动,构建数据驱动的高效运营管理新模式。 车联网 车联网是新一代网络通信技术与汽车、电子、道路交通运输等领域深度融合https://www.processon.com/view/654c455f8f11b40fe56ece43
16.数据仓库与数据挖掘技术—数据挖掘分类及过程模型数据挖掘:首先根据对问题的定义明确挖掘的任务或目的,如分类、聚类、关联规则发现或序列模式发现等。然后选择算法 结果解释与评估:对发现的模式进行可视化,或者把结果转换为用户容易理解的其他表示形式 Fayyad过程模型从某种意义上来说是面向理论,偏向技术的模型,而不是面向工程、面向应用的模型。虽然有模型的评估,但侧重https://www.jianshu.com/p/da25173289b9
17.数据挖掘的步骤包括什么数据挖掘是一个通过特定算法对大量数据进行处理和分析,以发现数据中的模式、趋势或关联性的过程。下面详细介绍数据挖掘的步骤包括什么? 1、数据收集 首先,需要收集与待挖掘主题相关的数据。可能涉及从各种来源(如数据库、文件、网络等)获取数据,并将其清洗、整合到一个统一的格式中。 https://www.pxwy.cn/news-id-81213.html