玩转大数据:深入浅出大数据挖掘技术识艺教育

玩转大数据:深入浅出大数据挖掘技术

公众号

小程序

一、本课程是怎么样的一门课程(全面介绍)

1.1、课程的背景

“大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。“大数据”其实离我们的生活并不遥远,大到微博的海量用户信息,小到一个小区超市的月销售清单,都蕴含着大量潜在的商业价值。

正是由于数据量的快速增长,并且已经远远超过了人们的数据分析能力。因此,科学、商用等领域都迫切需要智能化、自动化的数据分析工具。在这样的背景下,数据挖掘技术应用而生,使得海量数据的分析变得易如反掌。

1.2、课程内容简介

本课程名为深入浅出数据挖掘技术。所谓“深入”,指得是从数据挖掘的原理与经典算法入手。其一是要了解算法,知道什么场景应当应用什么样的方法;其二是学习算法的经典思想,可以将它应用到其他的实际项目之中;其三是理解算法,让数据挖掘的算法能够应用到您的项目开发之中去。所谓“浅出”,指得是将数据挖掘算法的应用落实到实际的应用中。课程会通过三个不同的方面来讲解算法的应用:一是微软公司的SQLServer与Excel等工具实现的数据挖掘;二是著名开源算法的数据挖掘,如Weka、KNIMA、Tanagra等开源工具;三是利用C#语言做演示来完成数据挖掘算法的实现。

根据实际的引用场景,数据挖掘技术通常分为分类器、关联分析、聚类算法等三大类别。本课程主要介绍这三大算法的经典思想以及部分著名的实现形式,并结合一些商业分析工具、开源工具或编程等方式来讲解具体的应用方法。

1.3、课程大纲

1)数据挖掘概述与数据

本章讲解了数据挖掘技术的起源、应用场景以及基本的处理方法,并对于数据集、数据等基本的概念做了阐释。

2)可视化与多维数据分析(实践课)

本章讲解了数据可视化的基本方法,并分别演示了Excel数据透视表与SQLServerAnalysisService对于多维数据的可视化处理。(OLAP)

3)分类器与决策树

本章讲解了分类器的基本概念与应用方法,并具体分析了分类器经典算法之一决策树的实现方法。

4)其他分类器(上)

本章讲解了另外两种经典的分类器算法:基于规则的分类器与基于距离的分类器。

5)其他分类器(下)

本章讲解了其他一些常见的分类器算法,如基于距离的分类器的改良算法、贝叶斯分类器、人工神经网络、支持向量机与组合方法等。

6)决策树的应用(实践课)

本章演示了利用WekaExplorer、KNIME、Tanagra等开源工具进行的数据挖掘处理。演示中对比了几类数据挖掘算法,如Cart决策树、C4.5决策树、KNIME决策树、简单贝叶斯分类、组合方法(装袋)、人工神经网络、基于规则的分类等。

7)关联分析

本章讲解了关联分析的常见算法,即Apriori算法与FP增长算法。

8)购物车数据分析(实践课)

本章主要演示了利用微软的解决方案来进行购物车数据的关联分析,包括SQLServiceAnalysisService的关联分析与Excel结合SSAS外接程序等方法。最后还利用WekaKnowledgeFlow工具来进行关联分析,以便对比第六章的实践。

9)聚类算法

本章讲解了聚类算法的基本原理与常见算法,包含K均值算法、层次聚类、基于密度的聚类算法。

10)聚类算法C#源代码实现(实践课)

本章演示如何通过C#源代码实现聚类算法。

1.5、讲师介绍

艾伦:世界500强顶级企业2年云计算工作经验,拥有多年的开发经历,擅长SQLServer数据库并对数据处理有一定的研究,同时也有许多C/C++、C#、Jquery等网页与桌面应用开发经验。

二、为什么需要这么套课程?

2.1、企业需要什么?

数据挖掘是一门比较新的技术,而数据挖掘的需求并没有完全的挖掘出来。在这样的情形下,我们依然看到很多企业对这样的新技术有着强烈的需求。

(说明:以下企业需求职位均来自于51job.)

职位1、数据库工程师

职位2、软件开发工程师

职位3、市场分析员

更多企业招聘信息请参考:www.51job.com

2.2、课程学习目标(我们提供什么?)

目标一.可以让学员了解与理解主要的数据挖掘技术。

目标二.可以让学员迅速掌握各类数据挖掘技术的应用场景。

目标三.可以让学员迅速掌握常见的数据挖掘工具的使用方法。

目标四.可以让有一定基础的学员对数据挖掘的代码实现入门。

2.3、课程特色

特点二、实践应用各有侧重,会从几种不同风格的软件或工具入手来演示。如主流软件公司的数据挖掘产品(微软公司的SQLServiceAnalysisService)、开源软件与工具(Weka、KNIME、Tanagra)以及挖掘算法通过C#代码的实现。充分照顾到学员对于应用软件的偏好。

特点三、学习的过程中理论和实践相结合,案例数据具备一定的代表性。并且课程提供所有的案例数据供学员自行修改和调试,以巩固加深学习效果

2.4、课程亮点

亮点一、数据挖掘本身就是前沿的技术,中文的教材、课程数量非常少,如此的课程在国内也不常见。

亮点二、理论与实战相结合,深入浅出。即照顾到基础学员,又照顾到有一定经验的学员,即讲解细致,又一针见血,对技术绝不含糊。

亮点三、代码的实现是一行一行手工敲入,手把手一步步带领学员从入门到精通。

亮点四、实践演示涉及到的软件、工具数目众多,照顾不同使用习惯的学员。

亮点五、整个课程虽短,但“麻雀虽小,五脏倶全”。讲解过程节奏紧凑且内容充实。

3.课程真心不错,我可以学吗?

本课程会涉及到不少数据挖掘的算法。为了更好地理解算法,建议学员可以有一定的基本算法的基础。除了SQLServiceAnalysisService的应用实践,大部分的演示都避免了使用数据库来导入数据,因此对于数据库的知识没有特别要求。若学员希望理解最后一章的代码实现,需要具备C#的基本知识。

1、学习基本算法在Java的实现,推荐您学习

2、学习基本算法在C#的实现,推荐您学习

3、学习C#的基本知识,推荐您学习

4.我该怎么学,如何才能学好这门课程,给些建议。

本课程共10讲,由于内容比较紧凑,建议每天一讲,深入理解课程内容。

4.2、学习要求

如果您有基础,建议学习算法后可以尝试利用代码实现算法,并学会举一反三

4.3、讲师建议(讲师给学员的建议)

建议:

1.最好看完视频之后,抛开视频,仔细想想每个算法的原理与思想;若记忆不深刻,可以回过头看再看下视频,如此反复,达到真正理解和熟练掌握的目的。

2.对于项目实战部分,一定要自己亲自动手做一遍,不要听完就结束。

4.最后祝您学有所成。

5.学完这门课程后能做什么?

学会该课程后,尝试着问自己几个问题:

1.在您的生活中、工作中是否有尚未开发的数据?

2.那些尚未开发的数据与数据挖掘哪一个模型能够匹配?

3.能否尝试使用数据挖掘的方法来发现一些潜在的规律?

本课程是针对数据、数据分析与挖掘方向,可以帮助您学会数据挖掘的思想,并不限定于某个特定的专业技术。掌握该技术后,一定能使您对于自己的业务数据的分析方法与能力更上一层楼。

6.学员常见问题:

常见问题一:学习该教程会使用哪些软件?软件有没有随教程提供,没有提供的话,软件的的下载地址,及他们所使用的版本如何?

讲师回答:本课程的软件分为两个部分:

第一个部分是微软公司的OfficeExcel、SQLServerAnalysisService(SSAS)、VisualStudio。VisualStudio主要用于演示层次聚类算法的C#实现,并不限制于特定的版本。Excel与SQLServer结合所需的版本如下:

Excel2007与SQLServer2005

Excel2007与SQLServer2008

Excel2010与SQLServer2012

第二部分是一些开源软件与工具,课程中会提供工具下载的链接。

常见问题二:学这个课程需要什么基础?

讲师回答:适合对数据分析有兴趣的学员。建议对基本算法、数据库等知识有一定了解。开源软件与工具界面为英文,主要以单词为主,对英文没有特别要求。

常见问题三:这种技术一般可用在什么场合?

讲师回答:本数据是数据分析领域的一个技术点,不是一个特定的工具。首先,数据分析与挖掘的思想可以借鉴到生活中或者工作中的任意数据分析场景;其次,分析与挖掘的方法可以广泛用于市场定位、客户关系分析、项目开发等领域。掌握它后可以让你对数据的把控能力更得心应手,前(钱)途无限。

常见问题四:学完这项技术可以从事的工作岗位有哪些?

讲师回答:越来越多的企业开始进入了大数据的潮流。主要的职位是数据分析专员与数据挖掘工程师,但是很多工作岗位都将数据挖掘作为选拔人才的加分项。相信未来数据挖掘的重要性会随着互联网、云计算的发展进一步地增加。

THE END
1.大数据数据分析数据挖掘的差别大数据分析与数据挖掘数据分析是一个大的概念,理论上任何对数据进行计算、处理从而得出一些有意义的结论的过程,都叫数据分析。从数据本身的复杂程度、以及对数据进行处理的复杂度和深度来看,可以把数据分析分为以下4个层次:数据统计,OLAP,数据挖掘,大数据。 (二)数据统计 数据统计是最基本、最传统的数据分析,自古有之。是指通过统计学方https://blog.csdn.net/away30/article/details/78183534
2.大数据数据挖掘机器学习三者的区别和联系1、大数据 大数据就是许多数据的聚合; 大数据的特征: 1、数据量大 2、结构复杂 3、数据更新速度快 2、数据挖掘 机器学习方法在大型数据库中的应用称为数据挖掘(Data Mining) 数据挖掘就是把大数据的价值发掘出来,比如根据过去30年的气象数据,通过数据挖掘,几乎可以预测明天的天气是怎么样的,有较大概率是正确的; https://www.jianshu.com/p/e50ff2010cc5
3.什么是大数据挖掘方法帆软数字化转型知识库大数据挖掘方法是指通过使用各种技术和工具,从庞大的数据集中提取有价值的模式、知识和洞察的过程。大数据挖掘方法包括:数据预处理、数据清洗、数据集成、数据变换、数据挖掘、模式评估、知识表示。其中,数据预处理是大数据挖掘过程中至关重要的一步,涉及对原始数据进行清洗、转换和准备,以确保其质量和一致性。数据预处理https://www.fanruan.com/blog/article/602183/
4.经典!10大数据挖掘算法!10大数据挖掘算法! 国际权威的学术组织 the IEEE International Conference on Data Mining (ICDM) 早前评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。 在此,花哥我深入介绍下这些算法的原理及实践经验,并补充介绍下当下热门的集成https://zhuanlan.zhihu.com/p/688376648
5.大数据的挖掘众所周知,大数据时代的大数据挖掘已成为各行各业的一大热点。 一、数据挖掘在大数据时代,数据的产生和收集是基础,数据挖掘是关键,数据挖掘可以说是大数据最关键也是最基本的工作。通常而言,数据挖掘也称为DataMining,或知 来源:社区问答 在电子商务领域如何利用挖掘大数据? 挖掘大数据的发展历史并不长,首次引人挖掘https://m.sf.163.com/search/5aSn5pWw5o2u55qE5oyW5o6Y
6.大数据崛起与数据挖掘分析论文而数据挖掘技术的重要性使人们对大数据的作用有了更加全面和深刻的了解,因此,要不断提升自身的数据挖掘能力,从而促进大数据技术不断崛起[7]。3.2大数据崛起有助于提高数据挖掘的工作效率任何一个实力雄厚的企业,其自身的技术能力一般不会太差,大数据崛起就说明了大数据挖掘技术已变得相当规范,从大数据技术被广泛运用到各https://www.unjs.com/lunwen/f/20191128180459_2250389.html
7.大数据挖掘是什么意思?一文讲清大数据挖掘,又称数据挖掘,是一种数据分析技术,主要用于帮助企业从复杂的数据中发现新的信息。它主要用于探索大数据集,以便发现潜在的关系,模式和规律。它可以帮助企业对客户更有效地收集、处理和理解客户信息,以便企业可以根据客户的特征和需求为客户提供更佳的服务。 https://www.sgpjbg.com/info/046662347844bfcc4f45af2c4bd876a3.html
8.大数据挖掘论文翻译:Dataminingwithbigdata对于一个处理大数据的智能学习数据库系统,关键在于适应巨大容量的数据,为此前提到的HACE原理所描述的特征提供应对方案。图2提供了大数据处理架构的一个概念模型,从里向外包括三层,依次是数据获取和计算(第一层),数据隐私和行业知识(第二层),大数据挖掘算法(第三层)。 https://blog.51cto.com/sddai/3026009
9.大数据关键技术四—大数据分析及挖掘技术随着大数据时代的到来,在大数据观念不断提出的今天,加强数据大数据挖掘及时的应用已成为大势所趋。 什么是大数据挖掘? 数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。 https://cloud.tencent.com/developer/news/320676
10.《大数据时代的数据挖掘》小说在线阅读本书以当前热点的数据挖掘应用贯穿全书,通过详解大数据挖掘技术在系统日志、工作票、可持续性研究、推荐系统、智能问答系统、社交媒体、生物信息学与健康医疗、隐私保护等方面的实际应用案例,阐述了如何更好地应用和学习数据挖掘技术。本书融入了数据挖掘前沿技术和典型应用,不仅适合热爱和关心数据挖掘技术的学术界和工业界https://m.qidian.com/book/1015916868/
11.大数据,数据挖掘人人都是产品经理“大数据自动挖掘”才是现在这些大数据的真正意义 现在大数据火得不行,几乎人人都在说大数据,但到底什么是大数据,恐怕没有多少人知道,鱼目混珠的人太多。 大数据不是指很多很多数据。 所以不是存储了很多数据就是在 师妹 大数据,数据挖掘 快讯 查看更多 https://www.woshipm.com/tag/%E5%A4%A7%E6%95%B0%E6%8D%AE%EF%BC%8C%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98
12.长尾关键词挖掘站长工具智能改写5118通过对排名各类大数据挖掘,提供关键词挖掘,行业词库,站群权重监控,关键词排名监控,指数词,流量词挖掘工具等排名工作人员必备百度站长工具平台https://www.5118.com/
13.大数据分析与挖掘大数据分析与挖掘 作者:朱晓峰 ISBN:9787111621027 出版社:机械工业出版社 出版年:2019 R语言大数据分析与挖掘 作者:谢笑盈 ISBN:9787121452383 出版社:电子工业出版社 出版年:2023 Hadoop大数据分析与挖掘实战 作者:张良均 ISBN:9787111522652 出版社:机械工业出版社 出版年:2016 大数据分析与挖掘实验教程 作者:万欣https://www.las.ac.cn/front/book/detail?id=1a9c127b88c6fa43732b7a20c91a9973
14.大数据与数据挖掘的概念及相互联系大数据与数据挖掘的概念及相互联系 当“大数据”铺天盖地般向我们涌来,人们往往期冀能够对大数据能够有更进一步的了解,“数据挖掘”因此成为我们理解大数据概念绕不过去的“坎”。通过将大数据与数据挖掘进行对比分析,将有助于人们了解大数据的来龙去脉和未来真实走向。https://www.cda.cn/view/117517.html
15.《大数据分析与挖掘》课程教学大纲(2022年2023年).docx挖掘英文名称:Bigdataanalysisandmining 课程类别:专业选修课学 时:48(理论课:32,实验课:16)学分:3 适用对象:软件工程专业、计算机科学与技术考核方式:考查先修课程:多媒体技术、程序设计、软件工程 二、课程简介本课程从大数据挖掘分析技术实战的角度,结合理论和实践,全方位地介绍基于 Python语言的大数据挖掘算法的https://max.book118.com/html/2022/0709/6100232111004210.shtm
16.大数据的数据挖掘方案有哪些?大数据的数据挖掘方案有:1、神经网络方法;2、遗传算法;3、决策树方法;4、粗糙集方法;5、覆盖正例排斥反例方法;6、统计分析方法;7、模糊集方法。关于数据挖掘,你必须知道的几个主要方法数据挖掘是一门交叉性的新兴学科,它将数据可视化、数据库技术、高性能计算机、统计学、机器学习、模式识别、人工智能等多个范畴的https://www.linkflowtech.com/news/1986
17.华为大数据HCIEBigDataHCIE-Big Data认证定位于大数据分析领域中大型分布式并行处理数据仓库平台的架构原理、优化设计、应用开发和大数据挖掘领域的基础理论、常用挖掘算法、应用设计以及开发,旨在推动业界大数据行业的专家型人才培养。 HCIE-Big Data认证包括但不仅限于:(1)华为企业级的大型并行处理分布式数据仓库平台FusionInsight LibrA的架构、功https://www.yeslab.net/productinfo/473898.html