一张图解读清楚:最完整的数据分析流程数据挖掘分析法有效性

典型的大数据分析包含以下几个步骤:

一、明确分析目的和思路

明确数据分析目的以及确定分析思路,是确保数据分析过程有效进行的先决条件,它可以为数据的收集、处理及分析提供清晰的指引方向。

目的是整个分析流程的起点。目的不明确则会导致方向性的错误。即思考:为什么要开展数据分析,通过这次数据分析要解决什么问题?

当明确目的后,就要校理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。

只有明确了分析目的,分析框架才能跟着确定下来,最后还要确保分析框架的体系化,使分析更具有说服力。

体系化也就是逻辑化,简单来说就是先分析什么,后分析什么,使得各个分析点之间具有逻辑联系。避免不知从哪方面入手以及分析的内容和指标被质疑是否合理、完整。

所以体系化就是为了让你的分析框架具有说服力。

要想使分析框架体系化,就需要一些营销、管理等理论为指导,结合着实际的业务情况进行构建,这样才能保证分析维度的完整性,分析结果的有效性以及正确性。

比如以用户行为理论为指导,搭建的互联网网站分析指标框架如下:

2、公开出版物:可以用于收集数据的公开出版物包括《中国统计年鉴》《中国社会统计年鉴》《中国人口统计年鉴》《世界经济年鉴》《世界发展报告》等统计年鉴或报告。

3、互联网:随着互联网的发展,网络上发布的数据越来越多,特别是搜索引擎可以帮助我们快速找到所需要的数据,例如国家及地方统计局网站、行业组织网站、政府机构网站、传播媒体网站、大型综合门户网站等上面都可能有我们需要的数据。

4、市场调查:进行数据分析时,需要了解用户的想法与需求,但是通过以上三种方式获得此类数据会比较困难,因此可以尝试使用市场调查的方法收集用户的想法和需求数据。

三、数据处理

数据处理是指对收集到的数据进行加工整理,形成适合数据分析的样式,它是数据分析必不可少的阶段。数据处理的基本目的是从大量的、杂乱无章、难以理解的数据中,抽取并推导出对解决问题有价值、有意义的数据。

数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。一般拿到手的数据都需要进行一定的处理才能用于后续的数据分析工作,即使再“干净”的原始数据也需要先进行一定的处理才能使用。

数据处理是数据分析的基础。通过数据处理,将收集到的原始数据转换为可以分析的形式,并且保证数据的一致性和有效性。

四、数据分析

数据分析是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。由于数据分析多是通过软件来完成的,这就要求数据分析师不仅要掌握各种数据分析方法,还要熟悉数据分析软件的操作。

数据挖掘其实是一种高级的数据分析方法,就是从大量的数据中挖掘出有用的信息,它是根据用户的特定要求,从浩如烟海的数据中找出所需的信息,以满足用户的特定需求。数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。

一般来说,数据挖掘侧重解决四类数据分析问题:分类、聚类、关联和预测,重点在寻找模式和规律。

数据分析与数据挖掘的本质是一样的,都是从数据里面发现关于业务的知识。

五、数据展现

一般情况下,数据是通过表格和图形的方式来呈现的,我们常说用图表说话就是这个意思。

常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等,当然可以对这些图表进一步整理加工,使之变为我们所需要的图形,例如金字塔图、矩阵图、漏斗图等。

大多数情况下,人们更愿意接受图形这种数据展现方式,因为它能更加有效、直观地传递出分析所要表达的观点。记住,一般情况下,能用图说明问题的就不用表格,能用表格说明问题的就不要用文字。

(6)报告撰写

数据分析报告其实是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整地呈现出来,供决策者参考。

一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提供视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。

另外,数据分析报告需要有明确的结论,没有明确结论的分析称不上分析,同时也失去了报告的意义,因为我们最初就是为寻找或者求证一个结论才进行分析的,所以千万不要舍本求末。

最后,好的分析报告一定要有建议或解决方案。作为决策者,需要的不仅仅是找出问题,更重要的是建议或解决方案,以便他们做决策时作参考。

所以,数据分析师不仅需要掌握数据分析方法,而且还要了解和熟悉业务,这样才能根据发现的业务问题,提出具有可行性的建议或解决方案。

THE END
1.数据挖掘概念(AnalysisServices该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: 您在查找什么?您要尝试找到什么类型的关系? 您要尝试解决的问题是否反映了业务策略或流程? 您要通过数据挖掘模型进行预测,还是仅仅查找受关注的模式和关联? https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.数据挖掘的分析方法可以划分为关联分析序列模式分析分类分析和数据挖掘流程 首先,我们需要明确数据挖掘的基本流程,如下表所示: 流程图 数据收集数据预处理数据分析结果评估结果展示 各步骤详解 1. 数据收集 这一阶段收集待分析的数据,可能来自数据库、CSV文件、API接口等多种来源。示例代码如下: importpandasaspd# 从CSV文件读取数据data=pd.read_csv('data.csv')# 读取名为dahttps://blog.51cto.com/u_16213297/12863680
3.数据挖掘的基本步骤和流程解析请阐述数据挖掘的基本过程和步骤数据挖掘的基本步骤和流程对于挖掘出高质量、有价值的信息至关重要。 一、数据挖掘的基本步骤 1. 明确目标 在进行数据挖掘之前,首先要明确挖掘目标,即确定想要解决的问题和期望得到的结果。 明确目标有助于指导后续的数据处理和分析工作。 例子:某电商企业希望通过数据挖掘分析用户购买行为,以提高销售额。 https://blog.csdn.net/m0_67484548/article/details/142665300
4.什么是数据挖掘的流程?一步步带你掌握数据挖掘的完整过程在数据预处理之后,下一步是对数据进行探索性分析。这一步骤的目的是理解数据的结构和模式,为后续的模型建立提供指导。数据分析可以使用统计方法和可视化工具,例如通过绘制散点图、直方图等来发现数据中的趋势和异常。 5. 模型建立 模型建立是数据挖掘的核心步骤。在这一阶段,需要选择合适的算法和模型来从数据中提取知https://www.cda.cn/view/204893.html
5.数据挖掘的六大过程这六个过程构成了一个系统而复杂的工作流程,旨在从大量数据中提取有用的模式和知识,支持决策和预测。 以下是每个过程的详细解释: 一、数据清洗 定义:数据清洗是对原始数据进行预处理的过程,旨在解决数据缺失、不一致、噪声等问题。 它是数据挖掘中非常重要的一个步骤,因为数据质量直接影响挖掘结果的准确性和可信度。https://www.ai-indeed.com/encyclopedia/10656.html
6.数据挖掘的挖掘流程是什么帆软数字化转型知识库数据挖掘的挖掘流程包括:数据准备、数据清洗、数据集成、数据变换、数据挖掘、模式评估、知识表示。其中,数据准备是整个流程的基础,它包括数据收集和初步数据探索。数据收集是指从各种数据源获取所需数据,这些数据源可以是数据库、数据仓库、文件系统以及实时数据流。初步数据探索则是对收集到的数据进行基本的统计分析和可https://www.fanruan.com/blog/article/593346/
7.简述数据挖掘的主要步骤。答数据挖掘的主要步骤如下:①数据准备。对数据进行集成,数据选择和预分析。即从操作型环境中提取并集成数据,解决语义二义性问题,消除脏数据,使数据范围缩小,数据挖掘质量得到提高。②数据挖掘。利用数据挖掘器(data mining processor)中的各种数据挖掘方法,从大量的数据中识别出潜在的、有效的、新颖的、具有潜在价值的https://easylearn.baidu.com/edu-page/tiangong/questiondetail?id=1730370113065387683&fr=search
8.网络数据挖掘的方法及装置存储介质及电子设备与流程1.本公开涉及网络数据安全技术领域,尤其涉及一种网络数据挖掘的方法及装置、存储介质及电子设备。 背景技术: 2.对重要数据的关键性识别是网络数据安全技术的基础,在相关技术中,一般是通过匹配关键数据库或关键数据组合数据库,并通过对不同的关键数据或数据组合单一权重来实现关键性识别。但是,这种方法容易导致错误接受率http://mip.xjishu.com/zhuanli/55/202210988582.html
9.数据挖掘技术方法(精选十篇)微博诞生也不过数年光景,就以之为例。微博是大家熟知的社交网站,通过社交网站的数据挖掘的管理流程,就可窥一斑而见全豹,对整个网络数据挖掘的方法与技术就都可以融会贯通了。我们可以举个例子,譬如应用面向对象的系统分析方法与设计等等。 2 网络数据挖掘方法https://www.360wenmi.com/f/cnkeyg31vygx.html
10.系统项目管理师(第4版)思维导图模板根据需要与可能,给出拟建系统的备选方案。对这些方案进行可行性研究,写出可行性研究报告。可行性研究报告审议通过后,将新系统建设方案及实施计划编写成系统设计任务书。 系统分析阶段 系统分析阶段的任务是根据系统设计任务书所确定的范围,对现行系统进行详细调查,描述现行系统的业务流程,指出现行系统的局限性和不足之https://www.processon.com/view/654c455f8f11b40fe56ece43
11.数据挖掘流程范文12篇(全文)根据数据库存储资源对象完成指定的操作, 以全面提高数据挖掘流程的操作水平。 摘要:数据挖掘是通过分析每个数据, 从大量数据中寻找其规律的技术, 数据挖掘会随不同领域的应用而有所变化, 每一种数据挖掘技术也会有各自的特性和使用步骤, 针对不同问题和需求所制定的数据挖掘过程也会存在差异。文章对数据挖掘的基本https://www.99xueshu.com/w/ikeyo1a9ca2z.html
12.商战数据挖掘:你需要了解的数据科学与分析思维数据科学的一条重要原则是,数据挖掘的流程可以分解为几个通俗易懂的环节。有些环节涉及信息技术的应用,如数据中模式的自动发现和评估,而有些则主要依赖数据分析师的创意、常识和商业知识。理解数据挖掘的整个过程,有助于组织数据挖掘项目,使它们更接近系统性的分析,而不是凭借运气和个人智慧的冒险行为。 https://www.ituring.com.cn/book/tupubarticle/28952
13.网络营销现在企业可以通过丰富的渠道获得用户相关信息,然后经过信息处理与数据挖掘的流程对用户信息进行管理,最后就可以针对不同的用户进行广告推送以及个性化服务。最后,如果大数据技术能够不断进步,各组织之间的数据能够进行共享与融合,就可以实现通过全渠道的数据聚合和标签运算建立描绘用户兴趣模型的用户画像,并进行用户的细分和https://www.ruiwen.com/w/468223.html
14.数据分析流程包括哪些步骤综上所述,数据分析流程包括了问题定义、数据采集、数据探索和可视化、数据预处理和特征工程、建立模型和算法选择、模型评估和优化、模型应用和结果解释等七个步骤。 数据分析过程中需要使用的分析方法 在数据分析过程中,需要使用多种分析方法和技术,以从数据中提取有用的信息和洞察。下面介绍几种常见的数据分析方法和技https://www.linkflowtech.com/news/1597
15.直播回顾单细胞测序:从样本制备到数据挖掘的全流程探讨2023年6月7-8日,瑞沃德特邀达普生物产品经理潘鑫和达普生物、高级科学家肖之夏做客直播间,以“单细胞测序:从样本制备到数据挖掘的全流程探讨”为主题进行精彩分享,在线与大家一起探讨单细胞测序的奥秘! 没有赶上看直播 或想再回顾精彩内容的小伙伴 扫码即可查看直播回放 https://www.yiqi.com/news/detail_23958.html
16.大数据一文总览数据科学全景:定律算法问题类型;什么是知识摄取的系统化流程:挖掘数据需要一套有条理的流程,这其中包括明确的步骤,以及每一步清晰可实现的目标。就好比跨行业数据挖掘标准流程(CRISP-DM)(https://en.wikipedia.org/ wiki/ Cross_Industry_Standard_Process_for_Data_Mining)。 与数据共眠:相关机构应当投资热衷于数据的专业人士。将数据转化为资源的不是https://zhuanzhi.ai/document/ba50f489f166e5f700f1800aab8dea65
17.一文搞懂!商业数据分析全流程CRISP-DM全称为CRoss Industry Standard Process for Data Mining(跨行业数据挖掘标准流程),如图1.2所示,这个流程模型将整个数据挖掘过程划分为六个主要阶段:业务理解、数据理解、数据准备、模型建立、模型评估和结果部署。 CRISP-DM强调,数据挖掘是一个迭代和探索的过程,六个步骤并不是线性的,而是根据实际情况灵活进行https://www.niaogebiji.com/article-606353-1.html
18.电子商务应用论文(15篇)2Web数据挖掘的流程 Web数据挖掘是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取商业决策的关键性数据,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。在电子商务环境下,Web数据挖掘主要分为以下几步:(1)数据收集。首先数据收集主要针对web数据中的服务器数据https://www.yjbys.com/biyelunwen/fanwen/dianzixinxigongcheng/733161.html