自然语言处理

开通VIP,畅享免费电子书等14项超值服

首页

好书

留言交流

下载APP

联系客服

2024.02.26北京

NLP总体介绍

一、NLP的本质

NLP是什么?

NLP是一种机器学习技术,使计算机能够解读、处理和理解人类语言。

NLP的本质:NLP的本质就是人类和机器之间沟通的桥梁!

NLP是人类和机器的沟通桥梁

人类:使用自然语言交流,如中文、英文等。

狗:通过汪汪汪和其他身体语言交流。

机器:使用数字信息进行交流。

人类与机器之间存在交流障碍,因为人类不直接理解数字信息,而机器不直接理解自然语言。

NLP就是人类和机器之间沟通的这座“桥梁”。

NLP技术允许机器理解和生成人类使用的自然语言。

比尔·盖茨说:“自然语言处理是人工智能领域皇冠上的明珠。”

NLP的价值:NLP的价值在于能够解锁非结构化数据的潜力,将文本转化为可分析的信息以支持企业决策,并推动人机交互向更自然、智能的方向发展。

结构化数据VS非结构化数据

NLP的技术是什么?

NLP的技术

NLP的基础技术:NLP基础技术涵盖语料库构建、中文分词、词性标注、句法分析、词干提取与词形还原、词向量化,以及命名实体消歧与识别,共同构成自然语言处理的核心框架。

定义:存放真实出现过的语言材料的电子资源。

用途:作为语言知识的基础,需经过加工处理才能有效利用。

定义:将汉字序列切分为单独的词的过程。

方法:字符串匹配、理解分词、统计分词、深度学习分词。

工具:StanfordNLP、HanLP等。

定义:为每个词赋予正确的词法标记。

方法:隐马尔科夫模型、最大熵模型、支持向量机、感知器模型、条件随机场模型、深度学习方法。

定义:分析句子的结构,确定词语间的语法关系。

方法:基于规则的分析、基于统计的分析。

词干提取:将词转换为词干或原型形式,去除变化或衍生部分。

词形还原:将词还原为词源或词典中的词目形式。

定义:将词语表示为实数向量,以捕捉语言与实数间的关系。

方法:Word2Vec等模型。

应用:自然语言处理任务的输入表示。

命名实体消歧:确定文本中提到的实体的具体含义,如区分同名不同义的实体。

命名实体识别:识别文本中具有特定意义的实体,并分类为人名、机构名、日期等。

方法:条件随机场(CRF)、字典法、混合方法等。

NLP的基础技术

NLP的核心技术:自然语言处理涵盖语义分析、信息检索与抽取、文本分类与挖掘、情感分析、问答系统、机器翻译及自动摘要等核心技术。

NLP的核心技术

二、NLP的原理

NLP核心组成:NLP=NLU+NLG,NLU负责理解内容,NLG负责生成内容。

NLP核心组成

自然语言理解(NLU):负责将机器变得像人一样,具备正常人的语言理解能力。

NLG

NLP语言模型:NLP语言模型用于捕捉语言的统计和结构特性。

NLP语言模型

独热编码将每个词表示为一个向量,其中只有一个维度是1(代表该词),其余维度都是0。这种方法简单但稀疏,且无法捕捉词之间的关系。

词袋模型忽略文本的语法和词序,将文本视为词的集合。它通常用于文本分类,其中每个文档被表示为一个词频向量。

Bi-gram模型考虑连续的两个词对的统计关系,而N-gram则考虑连续的N个词。这些模型用于捕捉词序信息,但受限于窗口大小。

分布式表示,如wordembeddings,将词编码为固定大小的向量,其中每个维度都捕获了词的某个方面的含义。这些向量是在大量文本上训练的,能够捕捉词之间的语义和语法关系。

共现矩阵记录词与词在文本中的共现频率。这种表示可以捕捉词之间的统计关系,但通常很稀疏且维度高。

NNLM使用神经网络来预测给定上下文的下一个词。它通过学习词的分布式表示来捕捉语言的结构和语义信息。

word2vec是一种特定的神经网络架构,用于学习词的分布式表示。它有两种主要方法:Skip-gram和ContinuousBagofWords(CBOW)。word2vec能够高效地处理大规模数据集,并生成高质量的词向量。

THE END
1.非结构化数据的处理技术和应用文本分析是非结构化数据处理的一种重要技术,可用于从文本数据中提取有用的信息和知识。文本分析可以分为三个步骤:文本预处理、特征提取和建模分析。文本预处理包括分词、去除停用词、文本归一化等步骤;特征提取包括词袋模型、TF-IDF等方法;建模分析包括聚类、分类、情感分析等方法。文本分析的应用场景包括社交媒体的舆情https://wenku.baidu.com/view/fea50c8f00d8ce2f0066f5335a8102d276a261e8.html
2.大数据时代的非结构化数据处理技术图像识别和视频分析技术是非结构化数据处理中不可或缺的一部分。得益于深度学习模型的快速发展,图像和视频分析技术能够从海量的视觉数据中自动提取关键特征,如物体识别、场景分类、动作分析等。 在安全监控领域,视频分析技术可以自动识别异常事件,减少人工监控的成本和误差。此外,在制造业,图像识别技术被广泛应用于产品质https://www.gokuai.com/press/a1165
3.非结构化数据提取技术在统计工作中的应用摘要结构化数据和非结构化数据是大数据的两种类型,目前非结构化数据信息已达信息总量的85%以上,且每年以55%~65%的速度增长,统计工作受到大数据的冲击,日常总会遇到一些非结构化数据提取的难题,导致工作量加大,效率低下。本文对非结构化数据及其提取技术、大数据处理语言——Python语言进行学习研究,解决实际中遇https://tjj.changzhi.gov.cn/sjfx/202207/t20220704_2588893.html
4.IBMCloudObjectStorage在银行业非结构化数据存储嘲下的对象随着银行业IT技术的快速发展和业务的不断升级变革,业务应用系统产生的非结构化数据(包括文件、图片、音视频文件等)的规模也越来越大,银行业非结构化数据呈指数式爆发式增长。目前使用非结构化数据的主要系统包括内容管理平台、后督影像系统、身份验证、柜员办业务扫描件等需要用到影像图片,以及呼叫中心系统、电话客服的https://redhat.talkwithtrend.com/Article/242823
5.人工智能技术在群聊类数据分析中的探索5.其他非结构化数据 如表情符号、红包等,也是群聊中常见的交流形式。 二、人工智能技术应用 为了有效处理群聊数据的碎片化、多样化等特性,人工智能技术发挥了重要作用,主要包括: 1.自然语言处理 通过NLP技术,我们能够对群聊中的文字数据进行多种处理,包括分词、词性标注、命名实体识别等。这些处理步骤可以帮助我们更好http://www.51testing.com/mobile/view.php?itemid=7800371
6.大数据金融第二章大数据相关技术首先是利用多种轻型数据库收集海量数据,对不同来源的数据进行预处理后,整合存储到大型数据库中,然后根据企业或个人目的和需求,运用合适的数据挖掘技术提取有益的知识,最后利用恰当的方式将结果展现给终端用户。 数据处理流程 一 数据采集 大数据的采集是指在确定用户目标的基础上,对该范围内的所有结构化、半结构化、https://www.jianshu.com/p/d68251554c66
7.Top前沿:农业和应用经济学中的机器学习,其与计量经济学的比较然后,确定了当前计量经济学和模拟模型工具箱在应用经济学方面的局限性,并探索了机器学习法提供的潜在解决方案。在预测和因果分析中,深入研究了不灵活的函数形式、非结构化数据源和大量解释性变量等情况,并强调了复杂模拟模型的挑战。最后,作者认为,当用于定量经济分析时,经济学家在解决机器学习法的缺点方面有着至关https://blog.51cto.com/u_15057855/2675591
8.互联网成数据宝库,网络数据采集技术推动人工智能发展官网互联网数据量呈指数式增长,非结构化数据的应用依赖于清洗标注 PC、互联网、消费级移动设备的兴起宣告了数据时代的来临,数据量呈指数式增长,据IDC统计,全球每年生产的数据量将从2016年的16. 1ZB猛增至2025年的163ZB,其中80%-90%是非结构化数据。过去计算机主要处理结构化数据,人工智能模型却以处理非结构化数据见长https://www.tanmer.com/blog/575
9.2022年度陕西省重点研发计划项目申报指南目录4.9 大规模非结构化网格并行剖分技术研究 4.10 大流量高温燃油调节方法及调节器设计关键技术 5.新一代通信技术 5.1 空地一体化网络立体致密多维覆盖技术 5.2 面向天地一体化大规模星座的网络化测控关键技术 5.3 新型天线形态下基于大规模 MIMO 的机载数据高速传输技术 http://www.kt180.com/html/sxs/9889.html
10.中信证券非结构化数据处理平台建设实践中信证券综合应用OCR、NLP、RPA、搜索引擎、知识图谱等AI技术,在非结构化数据识别解析、自然语言理解与结构化处理、非结构化知识存储与检索等方面,开展公司级非结构化数据处理平台建设。 作者 中信证券股份有限公司信息技术中心 岳丰 王哲 刘殊玥 余怡然 方兴 https://www.secrss.com/articles/53891
11.行政管理论文15篇工商行政管理工作想要顺应时代的潮流,跟上社会发展的步伐,就必须将现代的大数据技术应用的到工商行政管理工作中,以此来提高工作效率,更好地对企业进行监督管理,助推企业的规范化稳定快速发展。 2大数据技术概述 大数据技术是在庞大的数据信息资源中进行分析、处理和检索等过程,提取出对当前工作最有利用价值的信息资源。https://www.ruiwen.com/lunwen/6220159.html
12.科学网—[转载]武新:大数据架构及行业大数据应用所谓的“大数据应用”主要是对各类数据进行整理、交叉分析、比对,对数据进行深度挖掘,对用户提供自助的即席、迭代分析能力。还有一类就是对非结构化数据的特征提取(指纹、图像、语音自动识别、基因数据比对等),以及半结构化数据的内容检索(搜索)、理解(语义分析)等。传统数据库对这类需求和应用无论在技术上还是功能上https://blog.sciencenet.cn/blog-887780-1358813.html
13.什么是数据转换,数据转换的知识介绍图像数据转换:图像数据转换包括图像格式转换、大小调整、色彩空间转换等,广泛应用于图像处理、计算机视觉等领域。 3.数据转换分类 结构化数据与非结构化数据转换 结构化数据:指具有明确定义格式和字段的数据,如数据库表格中的数据。结构化数据转换通常涉及数据表连接、聚合、筛选等操作。 https://www.eefocus.com/baike/1694420.html
14.Python实战:非结构化数据分析非结构化数据处理在当今大数据时代,非结构化数据无处不在,包括社交媒体、电子邮件、网络日志、视频监控数据等。Python作为一种强大的编程语言,提供了丰富的库和框架,用于处理和分析非结构化数据。本文将详细介绍Python在非结构化数据分析中的关键技术,并通过具体代码示例展示如何应用这些技术。https://blog.csdn.net/oandy0/article/details/137567962
15.AnyShare内容数据湖:海量非结构化数据存储与处理的基石·海量非结构化数据难以描述,难以形成结构化的属性信息以提升识别、理解、查找、利用效率 业务系统的文档属性统一管理 ·业务系统孤岛为企业带来统一管理、搜索、整合难题,业务流程打通需要元数据管理能力支撑 海量数据的文档属性访问压力 ·非结构化数据的暴增和丰富的业务应用将带来内容元数据的增长和访问压力,元数据服务https://www.aishu.cn/cn/feature/content-lake