按数据来源分,可将数据分为如下几个类型

按数据类型可分为:结构化数据、半结构化数据、非结构化数据。

(1)结构化数据

一般是从内部数据库和外部开放数据库接口中获得,一般都是存储产品业务运营数据以及用户操作的结果数据,比如注册用户数、下单量、完单量等数据。这类数据格式规范,典型代表就是关系数据库中的数据,可以用二维表来存储,有固定字段数,每个字段有固定的数据类型(数字、字符、日期等),每个字节长度相对固定。这类数据易于维护管理,同时对于查询、展示和分析而言也是最为方便的一类数据格式。

(2)半结构化数据

应用的点击日志以及一些用户行为数据,通常指日志数据、xml、json等格式输出的数据,格式较为规范,一般是纯文本数据,需要对数据格式进行解析,才能用于查询或分析数据。每条记录预定义规范,但是每条记录包含信息不同,字段数不同,字段名和字段类型不同,或者还包含着嵌套的格式。

(3)非结构化数据

即ExtractTransformLoad,描述数据抽取、转换、加载的过程。

数据仓库从各数据源获取数据以及在数据仓库内的数据流转和流动都可以认为是ETL过程,ETL是数据仓库的流水线,也可以认为是数据仓库的血液,它维系着数据仓库中数据的新陈代谢,而数据仓库日常的管理和维护工作大部分精力是保持ETL的正常和稳定。

Kettle是常用的ETL处理开源免费工具,其中文名叫水壶,该项目的主程序员MATT希望把各种数据放到一个壶中,然后以指定的格式流出。Kettle是纯Java编写,可以在Windows、Linux、unix上运营,数据抽取效率高效稳定,开放源代码,便于二次开发包装。但其数据抽取速度和大数据处理方面的能力比起powercenter、informatica、datastage等商业软件要慢。

数据仓库基本架构包含数据流入/流出的过程,可以分为三层:源数据、数据仓库、数据应用。

(1)ODS(OperationalDataStore)数据操作层

用于原始数据在数据平台的落地,这些数据从数据结构、数据之间的逻辑关系上都与雨啊是数据层基本一致。在源数据进入这一层时,通常要进行数据清洗,如业务字段提取、去掉不用字段、脏数据处理等。默认保留近30天的数据,表命名规范为:ods_主题_原表名。

(2)DIM(DimensionDataLayer),数据维度层

(3)DWD(DataWarehouseDetail)数据明细层

用于源系统数据在数据平台中的永久存储,用以支持DWS层和DM层无法覆盖的需求。默认保留历史至今的所有数据,表命名规范为:dwd_主题域_描述,如dws_driver_detail司机个人信息表。

(4)DWS(DataWarehouseService),数据汇总层

主要包含两类汇总表,一是细粒度的宽表,二是粗粒度的汇总表。例如打车业务,包含基于订单、乘客、司机、车辆等细粒度的宽表和基于维度组合如(用户日下单量汇总、用户日完单量汇总、司机日接单量汇总)的粗粒度汇总表。DWS层的汇总数据目标时满足80%的业务计算,默认保留历史至今的所有数据,表命名规范为:dws_主题域_描述,如dws_订单_今日下单量。

THE END
1.结构化半结构化和非结构化数据腾讯云开发者社区结构化、半结构化和非结构化数据 一、结构化数据 结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。举一个例子: 代码语言:javascript 复制 id name age gender1Liu Yi20male2Chen Er35female3Zhang San28https://cloud.tencent.com/developer/article/1351609
2.结构化数据半结构化数据和非结构化数据分析结构化数据也称作行数据,是由二维表结构来逻辑表达和实现的数据,严格地遵循数据格式与长度规范,主要通过关系型数据库进行存储和管理。与结构化数据相对的是不适于由数据库二维表来表现的非结构化数据,包括所有格式的办公文档、XML、HTML、各类报表、图片和音频、视频信息等。支持非结构化数据的数据库采用多值字段、了https://blog.csdn.net/weixin_45847421/article/details/115499725
3.结构化半结构化和非结构化数据都有哪些数据可以根据其格式和可访问性被分类为结构化数据、半结构化数据和非结构化数据。下面是每种数据类型的定义和一些例子: 结构化数据 结构化数据是指遵循固定格式的数据,通常存储在关系数据库中。这种数据类型易于搜索和组织,因为它遵循一定的模式(如表格),每个数据项都有明确的字段。 https://www.jianshu.com/p/7018b1bef624
4.结构化与非结构化的区别多源异构数据源半结构化数据②非结构化数据:指数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。如word、pdf、ppt及各种格式的图片、视频等。 其实除了结构化和非结构化数据,还有一类是半结构化数据,那什么是半结构化数据? ③半结构化数据:指非关系模型的、有基本固定结构模式的数据,例如日志文件、XML文https://www.fanruan.com/bw/doc/154297
5.数据类型。A结构化数据B半结构化数据C非结构化数据视频数据是典型的( )数据类型。 A、结构化数据 B、半结构化数据 C、非结构化数据 D、都不是 点击查看答案进入小程序搜题 你可能喜欢 高浓碎浆机对造纸的碎解强 点击查看答案进入小程序搜题 螺旋夹紧机构是斜楔夹紧机构的变形,它对提高有效夹紧力和自锁性能都非常有利,所以,螺旋夹紧机构得到了很好的应用。( https://m.ppkao.com/wangke/daan/993684793c674f4794eabdf20b3ff729
6.什么是结构化半结构化和非结构化数据?什么是结构化、半结构化和非结构化数据? ①结构化数据:指关系模型数据,即以关系数据库表形式管理的数据,结合到典型场景中更容易理解,比如企业ERP、OA、HR里的数据。 ②非结构化数据:指数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。如word、pdf、ppt及各种格式的图片、视https://it.ynnu.edu.cn/info/1054/2898.htm
7.半结构化非结构化数据是什么?价值密度低是什么意思?非结构化一般指无法结构化的数据,没有固定的结构,例如图片,文件,视频等,大数据时代可以利用信息技术处理这类数据。 半结构化数据是指有基本固定的结构的数据,介于结构化数据和非结构化数据之间。如邮件系统就是半结构化数据:其中的收发件功能、主题等,有一定规律的数据属于结构化数据;而附件内容,如图片、音频等属于https://www.dongao.com/dy/zckjs_zl_53655/12803215.shtml
8.BytesIo存储非结构化数据hadoop存储非结构化数据Bigdata:数据分三类 结构化数据:约束 半结构化数据:xml,json,yaml没有预定义的数据模型 非结构化数据:没有元数据;日志信息, 搜索引擎:搜索组件、索引组件(一般保存在分布式存储中) 蜘蛛程序;(爬取的数据都是非结构化,半结构化数据) 搜索引擎构建出倒排索引来检索, https://blog.51cto.com/u_14125/10549990
9.大数据时代往往以半结构化和非结构化数据为主。()大数据时代往往以半结构化和非结构化数据为主。()A.正确B.错误的答案是什么.用刷刷题APP,拍照搜索答疑.刷刷题(shuashuati.com)是专业的大学职业搜题找答案,刷题练习的工具.一键将文档转化为在线题库手机刷题,以提高学习效率,是学习的生产力工具https://www.shuashuati.com/ti/3404deac98e844cc8a3f88959b3e64ba.html
10.大数据基础术语精粹来袭结构化数据(即行数据,存储在数据库里,可以用二维表结构来逻辑表达实现的数据)而言,不方便用数据库二维逻辑表来表现的数据即称为非结构化数据,包括所有格式的办公文档、文本、图片、标准通用标记语言下的子集XML、HTML、各类报表、图像和音频/视频信息等等。 http://www.mudan.gov.cn/2c908084831c4eb30183205259ac001f/2c908084831c4eb3018320df837d0020/1669185201282129920.html
11.什么是结构化数据?结构化数据完整指南Elastic定义结构化数据,通过探索示例理解它与非结构化数据和半结构化数据有哪些不同,并了解如何使用结构化数据。https://www.elastic.co/cn/what-is/structured-data
12.Python爬虫数据的分类及json数据使用小结python对于半结构化数据,节点中属性的顺序是不重要的,不同的半结构化数据的属性的个数是不一样的。这样的数据格式,可以自由的表达很多有用的信息,包含自描述信息。所以半结构化数据的扩展性很好,特别适合于在互联网中大规模传播。 3.非结构化数据 就是没有固定的结构。各种文档,图片,视频或者音频都属于非结构化数据。https://www.jb51.net/article/208448.htm
13.大数据采集的数据类型有哪些对于半结构化数据的处理和分析,需要采用更加灵活的数据处理技术和工具,如自然语言处理(NLP)、文本挖掘、图像处理等技术。通过对半结构化数据的处理和分析,可以帮助企业更好地了解客户需求、市场趋势和业务状况等信息,从而进行更加精准的市场营销和决策。三、非结构化数据非结构化数据是指没有固定结构和含义的数据,如https://aiqicha.baidu.com/qifuknowledge/detail?id=10039928171
14.QuickBI支持多种数据源进行多维分析随着互联网的高速发展,数据量爆发式增长的同时,数据的存储形式也开始呈现出多样性,有结构化存储,如 Mysql, Oracle, SQLServer 等,半结构化甚至非结构化存储,如HBase,OSS 等。那么从事数据分析的人员就面临着从多种多样的数据存储形式中提取数据而后进行多维分析,这将是一件非常具有挑战的事情。而Quick BI 作为新一https://maimai.cn/article/detail?fid=1007780171&efid=4Y4M3SEMHRPmqy7F9SrY-w
15.对数据进行分类以下视频介绍半结构化数据和 NoSQL 数据存储选项: 非结构化数据 非结构化数据的组织结构未定义。 非结构化数据通常以文件格式提供,例如照片文件或视频文件。 视频文件本身可能具有整体结构且包含半结构化元数据,但是构成视频本身的数据是非结构化数据。 因此,将照片、视频和其他类似文件归类为非结构化数据。 https://docs.microsoft.com/zh-cn/learn/modules/choose-storage-approach-in-azure/2-classify-data
16.银行专岗计算机考试大纲(三)大数据的结构类型 大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC(互联网内容提供商)的调查报告显示,企业中80%的数据都是非结构化数据。 1.结构化数据 包括预定义的数据类型、格式和结构的数据。如:关系数据库中的数据。 2.半结构化数据 具有可识别的模式并可以解析http://www.yinhangzhaopin.com/yhks/yhbs/1/96117.html
17.行政管理论文15篇3.2对非结构化和半结构化数据的采集与应用 缺乏技术支撑像图像摘要技术、互联网搜索拦截技术、图像识别技术、磁盘恢复与解密技术、数字认证技术等非结构化和半结构化的应用和数据,在工商系统既无采集也无积累。由于没有充足完整的数据信息量做支撑,工商信息化还处于相对简单和小规模的阶段,依托海量数据或大数据的深度挖https://www.ruiwen.com/lunwen/6220159.html