结构化数据vs.非结构化数据

结构化数据vs.非结构化数据:结构化数据由明确定义的数据类型组成,其模式可以使其易于搜索。而非结构化数据通常由不容易搜索的数据组成,其中包括音频、视频和社交媒体发布等格式。

结构化数据vs.非结构化数据非结构化数据与结构化数据并不表示两者之间存在真正的冲突。客户不是基于他们的数据结构选择,而是在使用他们的应用程序中选择:关系数据库用于结构化数据,大多数其他类型的应用程序用于非结构化数据。

然而,结构化数据分析的难易程度与非结构化数据的分析难度之间的关系日益紧张。结构化数据分析是一个成熟的流程和技术。非结构化数据分析是一个新兴行业,在研发方面需投入大量的资金,但这不是一项成熟的技术。企业内部的结构化数据与非结构化数据问题决定了他们是否应该投资于非结构化数据的分析,以及将这二者结合是否成为一种更好的商业智能?

什么是结构化数据?

一些关系数据库确实存储或指向非结构化数据,例如客户关系管理(CRM)应用程序。由于备忘录字段不会将自己放到传统的数据库查询中,因此其集成可能不理想。尽管如此,大部分客户关系管理(CRM)数据都是结构化的。

什么是非结构化数据?

非结构化数据本质上是结构化数据之外的一切数据。非结构化数据具有内部结构,但不通过预定义的数据模型或模式进行结构化。它可能是文本的或非文本的,也可能是人为的或机器生成的。它也可以存储在像NoSQL这样的非关系数据库中。

典型的人为非结构化数据包括:

文本文件:文字处理、电子表格、演示文稿、电子邮件、日志。

电子邮件:由于其元数据,电子邮件具有一些内部结构,人们有时将其称之为半结构化。但是,其消息字段是非结构化的,传统的分析工具无法解析它。

社交媒体:来自Facebook、Twitter和LinkedIn的数据。

移动数据:短信、地点。

媒体:MP3、数码照片、音频文件、视频文件。

业务应用程序:MSOffice文档、生产力应用程序。

典型的机器生成的非结构化数据包括:

卫星图像:天气数据、地形、军事活动。

科学数据:石油和天然气勘探、空间勘探、地震图像、大气数据。

数字监控:监控照片和视频。

传感器数据:交通、天气、海洋传感器。

具包容性的大数据分析可以使用结构化数据和非结构化数据。

结构化数据与非结构化数据:有什么区别?

除了存储在关系数据库和存储在一个关系数据库之外的明显区别之外,大的区别在于分析结构化数据与非结构化数据的便利性。针对结构化数据存在成熟的分析工具,但用于挖掘非结构化数据的分析工具正处于萌芽和发展阶段。

用户可以通过文本非结构化数据运行简单的内容搜索。但是,缺乏有序的内部结构使得传统数据挖掘工具的目标失败,企业从富有价值的数据源(如媒体、网络、博客、客户交互,以及社交媒体数据)获得的价值很小。即使非结构化数据分析工具在市场上出现,但没有任何一个供应商或工具集是明确的赢家。许多客户不愿意投资于具有不确定发展路线图的分析工具。

除此之外,非结构化数据比结构化数据要多得多。非结构化数据占企业数据的80%以上,并且以每年55%和65%的速度增长。如果没有工具来分析这些海量数据,组织会在商业智能表上留下大量有价值的数据。

传统上,结构化数据对大数据应用程序来说更容易消化,但如今的数据分析解决方案正在这方面取得重大进展。

半结构化数据如何适用于结构化和非结构化数据

半结构化数据维护用于识别单独数据元素的内部标记和标签,从而实现信息分组和层次结构。文档和数据库都可以是半结构化的。这种类型的数据只代表结构化/半结构化/非结构化数据的5%-10%,但具有关键的业务用例。

电子邮件是半结构化数据类型的一个非常常见的例子。而更高级的分析工具对于线程跟踪,近似重复数据删除和概念搜索是必需的。电子邮件的本地元数据可以实现分类和关键字搜索,无需任何其他工具。

电子邮件是一个巨大的用例,但大多数半结构化的开发中心都在缓解数据传输问题。与基于Web的数据共享和传输一样,共享传感器数据也是一个不断增长的用例:电子数据交换(EDI),许多社交媒体平台,文档标记语言和NoSQL数据库。

半结构化数据的例子

开放标准JSON(JavaScriptObjectNotation)是另一种半结构化数据交换格式。Java隐含在名称中,但其他类似C语言的编程语言可以识别它。其结构由名称/值对(或对象、散列表等)和有序值列表(或数组、序列、列表)组成。由于结构在各种语言之间可以互换,JSON擅长在Web应用程序和服务器之间传输数据。

NoSQL半结构化数据也是许多NoSQL(不仅是SQL)数据库的重要组成部分。NoSQL数据库与关系数据库不同,因为它们不会将组织(模式)与数据分开。这使得NoSQL成为存储不容易适应记录和表格格式的信息(比如长度不同的文本)的更好选择。它还允许数据库之间进行更容易的数据交换。一些较新的NoSQL数据库(如MongoDB和Couchbase)也通过将它们以JSON格式本地存储来包含半结构化文档。

在大数据环境中,NoSQL不需要管理员将运营和分析数据库分离为单独的部署。NoSQL是可操作的数据库,并托管用于商业智能的本地分析工具。在Hadoop环境中,NoSQL数据库摄取并管理传入数据并提供分析结果。

结构化数据与非结构化数据:下一代工具是游戏规则改变者

可以使用新工具分析非结构化数据,特别是给定用例参数。大多数这些工具都基于机器学习。结构化数据分析也可以使用机器学习,但海量数据和许多不同类型的非结构化数据都需要它。

使用机器学习智能进行非结构化数据分析可使组织:

1.分析数字通信的合规性。违反合规性将会使企业损失数百万美元的费用、诉讼和业务损失。模式识别和电子邮件线程分析软件可以搜索海量的电子邮件和聊天数据,以防潜在的不合规情况。最近的一个例子就是大众汽车公司可能通过使用分析来监控可疑消息的通信,从而避免了巨额罚款和声誉损失。

在电子数据展示中,数据科学家使用关键字搜索非结构化数据并获得有关数据的合理构想。

无论企业的业务具体是什么,其目标都是挖掘业务价值,无论数据是结构化的还是非结构化的。这两种类型的数据都可能具有很高的价值,而较新的工具可以汇总、查询、分析和利用所有数据类型,以便在整个企业数据范围内获得更加深入的业务洞察力。

THE END
1.非结构化数据包括哪些内容非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、XML, HTML、各类报表、图像和音频/视频信息等等。 优势 有大量的数据需要处理 非结构化数据在任何地方都可以得到。这些数据可以在你公司内部的邮件信息、聊天记录以及搜集到的https://xue.baidu.com/okam/pages/strategy-tp/index?strategyId=141143856795013&source=natural
2.为什么叫非结构化数据库帆软数字化转型知识库非结构化数据库之所以被称为非结构化数据库,是因为它们能够存储和管理非结构化数据,具备灵活性、扩展性和高效性。其中,灵活性是非结构化数据库的一个显著特点。与传统的关系型数据库不同,非结构化数据库不需要预定义固定的数据模式,这使得它们能够更自由地处理各种类型的数据,如文本、图像、视频等。这种灵活性使得https://www.fanruan.com/blog/article/292598/
3.非结构化数据库——基础知识非结构化数据库——基础知识 1.NoSQL数据库定义、TRDB和NoSQL区别 NoSQL是一种不同于关系数据库的数据库管理系统设计方式,是对非关系型数据库的统称,它所采用的数据模型并非传统关系数据库的关系模型,而是类似键/值、列族、文档等非关系模型。NoSQL数据库没有固定的表结构,通常也不存在连接操作,也没有严格遵守https://blog.csdn.net/weixin_51911075/article/details/129328964
4.非结构化的数据库51CTO博客已为您找到关于非结构化的数据库的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及非结构化的数据库问答内容。更多非结构化的数据库相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。https://blog.51cto.com/topic/feijiegouhuadeshujuku.html
5.非结构化数据库包括哪些内容王利头非结构化数据库在现代数字世界中扮演着至关重要的角色,处理着大量来自各种来源的数据,从社交媒体帖子到传感器读数。与传统的关系数据库不同,非结构化数据库不使用预定义的模式或架构来组织数据。这为存储和查询大量异构数据提供了更大的灵活性。 非结构化数据库的类型 https://www.wanglitou.cn/article_26670.html
6.大数据基础术语精粹来袭非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图象、声音、影视、超媒体等信息)。 十七:数据库(Database) http://www.mudan.gov.cn/2c908084831c4eb30183205259ac001f/2c908084831c4eb3018320df837d0020/1669185201282129920.html
7.结构化半结构化和非结构化数据腾讯云开发者社区结构化、半结构化和非结构化数据 一、结构化数据 结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。举一个例子: 代码语言:javascript 复制 id name age gender1Liu Yi20male2Chen Er35female3Zhang San28https://cloud.tencent.com/developer/article/1351609
8.非结构化数据包括哪些内容非结构化数据涵盖了文本、图像、音频、视频等多种类型的数据形式,具有丰富多样的内容和应用场景。https://www.gokuai.com/press/a572
9.了解结构化数据与非结构化数据的差异SQL(结构化查询语言)。 MySQL和类似RDBMS的编程语言。该语言查询和管理关系数据库中的结构化数据。 阿帕奇 Hadoop。适用于结构化、半结构化和非结构化数据的大数据框架。 阿帕奇火花。使用数据帧实现大规模处理、数据流和结构化数据分析。 什么是非结构化数据? https://www.360doc.cn/article/68899713_1124424478.html
10.数据架构:大数据数据仓库以及DataVault这里的全体数据包括与企业中各类型数据相关的所有事项。 进一步细分企业中的全体数据有很多种方式。一种细分方式(但是肯定不是唯一方式)是将全体数据划分为结构化数据和非结构化数据,如图1.1.2所示。 结构化数据是一种可预见、经常出现的数据格式。通常,结构化数据包括记录、属性、键和索引等,可以通过数据库管理系统(https://www.ituring.com.cn/book/tupubarticle/11854
11.GIS空间数据库特征开源地理空间基金会中文分会开放地理空间实验室摘要: GIS空间数据库特征 1.综合抽象特征 空间数据描述的是现实世界中的地物和地貌特征,非常的复杂,必须经过抽象处理。不同主题的空间数据库,人们所关心的内容也有差别。所以空间数据的抽象性还包括人为地取舍数据。 2.非结构化特性 空间数据不能满足通用关系数据库的结构 https://www.osgeo.cn/post/ca0f9
12.非结构化数据的存储方案在企业中,非结构化数据一般指的是大型文档、图片、视频、日志、音频、微博等形式的数据。对于传统的SQL关系型数据库来说,非结构化数据是比较难被管理和处理的,在处理这种类型的数据时,就需要考虑一些简便的存储方案。基于文件系统的存储方案是最为常见的方式之一,因为它比传统的关系型数据库的存放非结构化数据更经济https://www.filez.com/news/detail/f258a16a3ce8fdc4aa02e5e7c67d5785.html
13.以下那些数据属于非结构化数据的是?()声明: 本网站大部分资源来源于用户创建编辑,上传,机构合作,自有兼职答题团队,如有侵犯了你的权益,请发送邮箱到feedback@deepthink.net.cn 本网站将在三个工作日内移除相关内容,刷刷题对内容所造成的任何后果不承担法律上的任何义务或责任 https://www.shuashuati.com/ti/d13c328065ce4f07888ba39048aa7e72.html
14.mongoDB和mysql对比分析及选择(详细版)数据库其它1)表结构不明确且数据不断变大 MongoDB是非结构化文档数据库,扩展字段很容易且不会影响原有数据。内容管理或者博客平台等,例如圈子系统,存储用户评论之类的。 2)更高的写入负载 MongoDB侧重高数据写入的性能,而非事务安全,适合业务系统中有大量“低价值”数据的场景。本身存的就是json格式数据。例如做日志系统。 https://www.jb51.net/database/287301v7z.htm
15.数据资产如何进行有效分类?数据分类的目的是为了针对不同特性的数据采取不同的管理策略,以期实现最大的投入产出比,不同的企业或组织基于不同的目的,可以从多个角度对数据进行分类,今天就来聊一聊主流的分法。 1、按照结构特征划分 可以分为结构化数据、非结构化数据及半结构化数据。 https://aidc.shisu.edu.cn/6e/59/c11041a159321/page.htm
16.干货:18张思维导图,后端技术学习路线长这样!应用程序服务器中间数据分为结构化数据与非结构化数据 像数据库表这种的数据是结构化数据;而对于像HTML、XML、文档这样不定长度且无固定格式的数据我们称之为非结构化数据。非结构化数据也称为全文数据,对非结构化数据的搜索可以用全文检索的方式, 目前两大主流的全文搜索引擎「Solr」和「Elasticsearch」都是基于 Lucene 建立。搜索引擎https://www.163.com/dy/article/FSRNF6FO0511FQO9.html
17.什么是NoSQLAWSNoSQL高性能非关系数据库服务下面列出了 NoSQL 数据库的优点。 灵活性 NoSQL 数据库通常提供灵活的架构,可以实现更快速、更多的迭代开发。灵活的数据模型使 NoSQL 数据库成为半结构化和非结构化数据的理想之选。 可扩展性 NoSQL 数据库通常被设计为通过使用分布式硬件集群来横向扩展,而不是通过添加昂贵和强大的服务器来纵向扩展。一些云提供http://aws.amazon.com/cn/nosql/columnar/
18.关系型数据库与非关系型数据库的区别数据库关系型数据库:关系型数据库基于关系模型,数据以表格的形式组织,由行和列组成。每个表格代表一个数据实体,行代表记录,列代表字段。数据之间的关系通过主键和外键来维护。 非关系型数据库:非关系型数据库则更加灵活,不依赖于固定的数据模型。它们可以存储和查询非结构化和半结构化的数据,如文档、图形或键值对等。这种https://developer.huawei.com/home/forum/hwc/thread-02112142096582872004-1-1.html