非结构化数据治理与数据中台

基于大数据引擎,通过可视化组件、托拉拽式实现数据汇聚与集成开发

指标定义、指标建模、指标固化、指标分析,一体化完成指标的落地与应用

组件化、零sql实现各类复杂报表和丰富多样的图表分析

面向业务人员,简单拖拽即可生成可视化图表

内置150+特效组件,快速打造酷炫灵动的可视化大屏,支持在线编码,拓展视觉体验至极致

搭载自然语言分析引擎,引入AI大模型技术,通过简单的对话问答实现快速数据分析

移动采集、审批、分析一站式解决移动办公诉求

一站式数据分析平台

了解ABI

全程“零”编码,高效实现主数据模型、主数据维护、主数据分发、主数据质量的全过程管理,为企业主数据管理落地提供有效支撑,实现各业务系统间的主数据共享,保障企业主数据的唯一性、准确性、一致性。

内置多类主数据模版,可视化实现多视角模型定义,满足复杂规则的编码自动控制

多种数据接入方式,支持不同场景的审批管控,数据版本可回溯,满足主数据的全生命周期管理

拖拽式任务设计,内置丰富组件,支持主动式、被动式分发模式

全过程质量管控,支持内置及自定义规则,提供图表式质检报告

主数据管理平台

在线模型设计,深度融合数据标准,规范数据定义

自动化元数据感知,全链路血缘提取,理清数据资源

智能化标准推荐,一键式数据落标,树立数据权威

“零”编码规则搭建,全流程质量整改,高速数据质检

规范资产目录,自助式数据共享,释放资产价值

超30+主流数据库、国产库、大数据库、文件、消息队列等接口之间极速交换结构化、非结构化数据

构建分级分类体系,动态数据脱敏,保障数据安全

全盘监控数据,决策数据周期,释放数据资源

智能数据治理平台

了解睿治

覆盖数据建模、采集、处理、集成、共享、交换、安全脱敏于一体,一站式解决数据开发所有的问题。

结合标准体系的可视化建模工具,支持模型的正、逆向构建

拖拽式任务编排,内置丰富组件,支撑亿级数据的快速处理与迁移

具备高并发、高吞吐量、低延迟的一体化任务编排能力,可视化设计、分布式运行

提供图形化的任务监控和日志跟踪,面向运维、管理人员的完善监控体系

数据工厂系统

纯web设计器,零编码完成基本表、变长表、中国式复杂报表、套打表、问卷调查表等制作;支持年报、月报、日报,以及自定义报表期等多种数据采集报送频率

提供在线填报和离线填报两种应用模式,也支持跨数据源取数;填报数据自动缓存在WEB浏览器中,即使宕机也不会丢失

内置灵活轻便的工作流引擎,实现了用户业务过程的自动化;支持层层审批、上级审批、越级审批、自定义审批等多种审批方式

对于下级填报单位上报的数据,上级汇总单位可将其进行汇总;支持层层汇总、直接下级汇总、选择单位汇总、按条件汇总、按代码组汇总、按关键字汇总、自定义汇总等

提供数据锁定机制,防止报表数据被意外修改;支持数据留痕,辅助用户过程追溯;未及时上报的用户自动催报;所见即所得的打印输出等

提供多种类型的数据接口,可以导入EXCEL、DBF、二进制、文本等格式的数据,可以将报表数据批量输出为HTML、EXCEL、XML、TXT等格式

数据采集汇总平台

统一指标定义,实现“一变多变、一数多现”的数据管理效果,为企业提供强有力的数字化保障和驱动效应。

采用可视化、导向式方式构建指标业务域,形成指标地图,全局指标一览在目

流程化自助式的定义、开发、维护各类指标,零建模,业务人员即刻上手

助力企业更好地查询、使用指标,提供共享、交换、订阅、分析、API接口等应用服务

指标管理平台

零代码+AI,有“问”必答的数字助理,利用AI大模型和数字人技术,通过语音&文字输入问题,自动识别业务指令,深度理解用户意图的问题,洞察数据,人机交互,重新定义BI新体验。

面向业务的对话式问数,即问即答,更懂你的诉求

理解数据,洞察数据,更懂数据内容,把数据见解讲给你听

动态地分析数据特点,提供最合适的图表类型展示,让数据展现更简单

完全是颠覆做表的方式,一句话看板创建,启发式内容制作

智能化生成包含深入分析和建议的报告,复杂数据简单化,释放数据潜力

数据跃然屏上的AI大屏汇报,让数据讲述故事

海量知识,一触即达,提供更智能的知识检索服务,快速找到“对”的人

不止于工具,更是随时待命的得力助手。一声指令,为您提供即时的数据分析和决策支持

智能数据问答平台

全面覆盖数据治理9大领域,采用微服务架构,融合度高,延展性强

实现数据从创建到消亡全生命周期的可视化,也实现全角色的可视化

丰富的智能元素和功能,大大缩短数据管理周期、减少成本浪费

THE END
1.四不像正版资料,构建解答解释落实m418.39.40看点2、复杂性:数据结构复杂,可能包含嵌套结构、多维数组等。 3、不确定性:数据质量参差不齐,可能存在缺失值、异常值等问题。 4、动态性:数据随时间不断变化,需要实时更新和处理。 针对这些特点,我们需要构建一个灵活且可扩展的数据处理框架,该框架应包括以下几个关键步骤: https://www.yzcjl.cn/post/5569.html
2.非结构化数据包括哪些内容非结构化数据包括哪些内容 在信息技术快速发展的今天,数据已经成为我们生活和工作中不可或缺的一部分。数据大致可以分为结构化数据和非结构化数据两大类。结构化数据主要指的是具有固定格式和结构的数据,如数据库中的表格数据。而非结构化数据,由于其形式多样、结构不固定,一直是数据处理和分析的难点和热点。https://www.zhuflow.cn/news/information/1358.html
3.非结构化数据有哪些而非结构化数据则是指那些不适合存储在传统数据库中的数据,它们通常以文本、图像、音频、视频等形式存在。https://www.gokuai.com/press/a573
4.一文讲透:非结构化数据工具多样性:市面上针对非结构化数据处理的工具和技术种类繁多,选择合适的工具并将其有效整合应用也是一大挑战。 3.8 、数据生命周期管理 数据存档和刑除:非结构化数据的生命周期管理复杂,包括数据的存档、备份和册除。需要制定明确的数据管理策略,确保数据在整个生命周期中的安全和可用性。 https://blog.csdn.net/qingzhumuqingfeng/article/details/144025043
5.非结构化数据库包括哪些内容王利头非结构化数据库包括哪些内容 非结构化数据库:深入探索和用例 引言 非结构化数据库在现代数字世界中扮演着至关重要的角色,处理着大量来自各种来源的数据,从社交媒体帖子到传感器读数。与传统的关系数据库不同,非结构化数据库不使用预定义的模式或架构来组织数据。这为存储和查询大量异构数据提供了更大的灵活性。https://www.wanglitou.cn/article_26670.html
6.非结构化数据包括以下哪些数据的存储非结构化数据包括以下哪些数据的存储()。 A.图片 B.文件 C.XML D.文档 点击查看答案 第2题 大数据在存储方面的特点有:数据量巨大,采用分布式存储,数据类型既包括结构化数据,又包括半结构化和非结构化数据。 点击查看答案 第3题 大数据不仅包括以文本资料为主的结构化数据,还包括网络日志、音频、视频、图片、https://www.shangxueba.cn/wangke/QMDA4HIL.html
7.大数据中非结构化数据的挖掘:文本一、 点击流中的非结构化文本数据都有哪些? 首先来定性什么是非结构化文本数据,这里指的是点击流原始数据中以文字形式展现的数据,包括原始LOG日志以及已经被结构化入库中的部分数据,比如Adobe Analytics的Data Feed,Webtrekk中的Raw Data。当然,有些数据虽然是文本或字符串的形式,但并不是真正意义上的非结构化,比如https://www.51cto.com/article/432085.html
8.大数据的详细定义大数据包括哪些类型:什么是结构化、非结构化和半结构化数据? 根据数据集的结构和建索引的难易程度,数据集通常被分为三类。 三种类型的大数据 结构化数据:这类数据最容易整理和搜索,主要包括财务数据、机器日志和人口统计明细等。结构化数据很好理解,类似于 Excel 电子表格中预定义的行列布局。这种结构下的数据很容易https://blog.itpub.net/70041355/viewspace-3029299/
9.数据湖存储非结构化数据星环科技为您提供数据湖存储非结构化数据相关内容,帮助您快速了解数据湖存储非结构化数据。如果想了解更多数据湖存储非结构化数据资讯,请访问星环科技官网(www.transwarp.cn)查看更多丰富数据湖存储非结构化数据内容。https://www.transwarp.cn/keyword-detail/52484-1
10.大数据一般用什么数据库大数据领域的数据库通常使用开源软件,如Hadoop、Cassandra等,相比于传统的商业关系型数据库,成本更低。 综上所述,大数据领域的数据库相对于传统的关系型数据库,具有更好的可扩展性、高可用性、更快的处理速度、更好的适应非结构化数据和更低的成本等优势。https://www.linkflowtech.com/news/2745
11.数据架构:大数据数据仓库以及DataVault值得注意的是,企业中的大数据包括重复型非结构化数据和非重复型非结构化数据,如图1.1.6所示。 1.1.5 分界线 一开始,对于非结构化数据的两种类型(重复型非结构化数据和非重复型非结构化数据),我们可能认为它们之间的差别是难以预料、微不足道的。实际上,这两种非结构化数据类型之间的差异并非微不足道。因为这两https://www.ituring.com.cn/book/tupubarticle/11854
12.信息公开专栏摘要结构化数据和非结构化数据是大数据的两种类型,目前非结构化数据信息已达信息总量的85%以上,且每年以55%~65%的速度增长,统计工作受到大数据的冲击,日常总会遇到一些非结构化数据提取的难题,导致工作量加大,效率低下。本文对非结构化数据及其提取技术、大数据处理语言——Python语言进行学习研究,解决实际中遇到https://www.changzhi.gov.cn/xxgkml/zfxxgkml/szfgzbm/czstjj/czsrmzf/tjxx_1188/sjfxhjd/202207/t20220704_2588893.shtml
13.结构化半结构化和非结构化数据都有哪些数据可以根据其格式和可访问性被分类为结构化数据、半结构化数据和非结构化数据。下面是每种数据类型的定义和一些例子: 结构化数据 结构化数据是指遵循固定格式的数据,通常存储在关系数据库中。这种数据类型易于搜索和组织,因为它遵循一定的模式(如表格),每个数据项都有明确的字段。 https://www.jianshu.com/p/7018b1bef624
14.大数据时代的古典文学研究——以数据分析数据挖掘与图像检索为中心首先建模,抽取特征,在训练数据中学习模型参数。当然,训练数据是越多越好。传统的机器学习需要提取特征,然后建立模型学习,“结构化文本”的自身特征恰好具有较为明显的“特征”,所以面对这类文本,数据分析基本可以满足我们的需求。 但大数据往往是“非结构化文本”,提取特征比较困难,加之数据是海量的,人工干预不现实、也http://www.sass.cn/109002/30207.aspx