如何为项目选择关系型数据库和非关系型数据库常见问题

您如何处理数据?哪些方面值得特别考虑?了解关系数据库和非关系数据库之间的差异,以做出明智的决策,并学习如何根据项目需求选择数据库。

这显然是为您的项目选择数据库时要解决的第一个问题。了解关系数据库和非关系数据库之间的区别有助于更具体地满足您的需求并利用正确的解决方案。

数据库已经使用了几十年,经历了许多变化和进步。但与此同时,大多数代表都可以称为一种或另一种类型。每个团队通常都面临着非关系型数据库和关系型数据库之间的选择。让我们介绍一下每种解决方案的主要特征,以便做出更明智的决策。当然,我们将从定义开始比较关系型数据库和非关系型数据库。

简单来说,数据库因数据结构而多样化。关系型解决方案专注于预定义模式来定义和操作数据。相比之下,非关系型解决方案以更好的灵活性而闻名,因为它们可以在不修改架构的情况下处理任何类型的数据。

关系数据库的显著特点是它总是使用行和列将数据存储在表中。因此,它支持一种直接直观的数据显示方式。同时,它允许团队根据特定实体形成关系。大多数关系数据库使用结构化查询语言;因此,它们通常被称为SQL数据库。

非关系型数据库被认为是一种可行的替代方案,因为并非所有数据都可以以表格格式存储。这种类型涵盖了所有不能遵循关系结构和传统SQL语法的数据库类型。这并不意味着它们不应用SQL语言。而且,它们中的大多数都使用SQL和UnQL(非结构化查询语言)。因此,这种类型也可以称为NoSQL(不仅仅是SQL)数据库。

如果SQL数据库属于基于表的类别,那么NoSQL数据库可以分为几类。最常见的NoSQL数据库类型包括:

关于关系型数据库和非关系型数据库之间的差异,团队有机会找到满足其需求的合理解决方案。当今的企业收集和处理大量数据,包括处理复杂的查询。概述良好的项目需求为做出明智的决策奠定了基础。

主要思想是,他们需要选择一个能够有效查询数据并支持即时结果的数据库。如果项目利用结构化数据并遵循ACID合规性,关系数据库是一个不错的选择。如果数据仍然是非结构化的并且不符合预定义的标准,最好选择非关系数据库。因此,让我们继续讨论对最终选择具有决定性的其他重要细节。

讨论关系数据库和非关系数据库之间的区别时,我们想提请大家注意这些数据库类型的主要优点和缺点。这极大地帮助团队做出选择并选择符合既定要求的数据库。主要思想是它允许他们进行全面的研究并保持业务特定性。数据库选择乍一看可能很困难,但考虑更多细节旨在简化最终决策。所以让我们来看看上述类型的数据库,看看它们的优缺点。

ACID特性使关系数据库与众不同,并使其占据市场主导地位。它涵盖了所有必要的标准,以保证数据库内交易的可靠性。

由于预定义模式和简单结构,关系数据库是一种相当直接的解决方案。由于团队使用结构化查询语言,因此不需要进行大量的架构工作。

与其他类型的数据库相比,关系数据库的数据准确性更高。它注重防止数据冗余,因为没有重复或重复的信息。

基于表的模型可以更容易地限制对机密数据的访问,并大大降低发生错误的可能性。

关系数据库具有垂直扩展性,但有一个明显的缺点:可扩展性低。严格的一致性要求限制了水平扩展,而垂直扩展则有一定的限制,并且很大程度上取决于支持的硬件。

僵化的模式和约束可能同时成为优点和缺点。

虽然解释数据和识别关系很容易,但对数据结构进行更改仍然很复杂。关系数据库不适合处理海量或非结构化数据。

随着非关系数据库的引入,处理大型数据集变得更加容易。此外,水平扩展允许团队容纳、管理和存储更多数据,同时保持较低的成本。

非关系型数据库具有灵活的数据模式和非刚性结构,可以组合、处理和存储任何类型的数据。这是非关系型数据库与仅处理结构化数据的关系型数据库的区别之一。非关系型数据库对非结构化数据应用动态模式。

如果关系数据库可用于复杂查询,则非关系数据库中的查询速度会更快。主要优点是它采用了最初针对查询优化的数据存储方式。此外,查询不需要关系数据库类型特有的接头。

维护数据完整性很大程度上取决于数据元素之间的关系。非关系型数据库缺乏完整性方法可能会降低整体数据的可靠性、准确性和完整性。开发人员有责任完成从一个阶段到另一个阶段的准确且无错误的数据传输。

对比关系型数据库和非关系型数据库,后者的数据分析功能较少。此外,即使对于最简单的查询,通常也需要编程专业知识来处理分析。此外,许多关系型数据库缺乏与流行的BI工具的集成。

在比较关系数据库和非关系数据库时,解决常见用例很重要。学习良好的市场实践和他人的经验可以为你的项目选择数据库提供一些额外的见解。显然,一个或另一个类别通常更适合某些需求和要求。团队的任务仍然是学习细节,参考最小的细节。

同时,您不会发现用例的严格区分。不同类型的项目已成功实施了不同类型的数据库。值得一提的是,了解关系数据库和非关系数据库的优缺点是必须的。可以通过详细分析项目规范和解决方案可用性来支持明智的选择。因此,让我们来看看关于在哪里使用关系数据库和非关系数据库的一些有用建议。

除非项目需要不断更改,否则稳定的数据结构是必要的。利用严格、有计划、可预测的模式来处理分布在不同表中的数据是一个很好的选择。此外,它增加了对更多工具的访问,用于测试和分析数据。有组织的和具体的性质使操作和数据查询更加容易。

当安全性和一致性成为首要任务时,团队需要做出正确的决策。关系数据库已成为一种合理的解决方案。由于最新的合规性法规,ACID原则支持处理数据所需的所有功能。这种类型通常是医疗保健、金融科技、企业等的选择。

快速积累率的原因是能够快速轻松地收集数据而无需预先定义。数据通常不受某些格式的限制,可以稍后处理。对于许多团队来说,非关系数据库是一个很好的选择,尤其是当项目要求不完全明确或他们计划进行持续更改或更新时。

快速开发环境使产品交付更快、更轻松。更少条理的方法消除了非关系数据库的任何前期准备、规划、准备或设计。团队可以继续进行即时开发。它通常适合MVP或一些紧急产品发布的需求。

由于市场上有许多不同类型的数据库,因此总有一种合适的方法来满足项目需求。当然,数据库的选择因项目而异。此外,一些团队发现将多个数据库组合在一起以覆盖所有用例是有效的。

如果不检查市场可用性,就无法完全解决如何选择数据库的问题。事实上,数据库的选择也受到市场状况和某些数据库的受欢迎程度的影响。此外,其他人的成功经验可以成为一种值得遵循的良好做法。只要团队确定了项目规范,他们就可以继续学习市场上可用数据库的更多细节。

紧跟市场趋势使他们能够保持最新状态并提高杠杆解决方案的效率。市场的快速增长带来了各种各样的数据库可供采用。目前,可用的数据库数量已达到300多个。因此,就像我们可以通过类型或功能来多样化数据库一样,按受欢迎程度对数据库进行排名也是常见的做法。

随着我们继续比较关系数据库和非关系数据库,值得一提的是,这两种数据库类型的代表都占据了强势地位。根据最新的StackOverflow开发者调查结果,让我们来看看最受欢迎的数据库。

MySQL是最知名的关系数据库之一。它于1995年发布,由于其功能和使用方法而广受欢迎。该开源数据库具有强大的支持,并且与大多数库和框架兼容。它适合提供跨平台解决方案,尽管主要用于SQL查询,但如果需要,它也具有NoSQL支持。

PostgreSQL是另一个功能强大的开源对象关系数据库,于1996年首次发布。它的一个显着特点是它以对象而不是行和列的形式呈现数据。PostgreSQL具有高度可扩展性;因此,它适合大型软件解决方案的需求。开发人员可以使用各种编程语言编写代码,因此无需重新编译数据库。

SQLite也是一个关系数据库管理系统,于2000年发布。它有一个显著的不同,因为它是一个服务器端数据库。这通常会使其速度更快,因为请求是由服务器序列化的。此外,它还与不同的编程语言绑定,并用于各种解决方案,包括物联网和嵌入式系统。

MicrosoftSQLServer是Microsoft于1989年推出的知名关系数据库管理系统。他们通过许多独特的功能(如定制、内存分析、集成等)极大地改进了该解决方案。此外,它还支持不同的开发工具和云服务;但是,它仅适用于基于Windows的服务器。

MongoDB被归类为非关系型解决方案,特别是2009年发布的面向文档的数据库。它使用类似JSON的对象,因此能够存储不同类型的数据。这种技术解决方案比关系型解决方案运行速度快得多,因为它不需要处理收集的数据。它通常保持非结构化,适合处理大量数据集。

Redis是一种流行的内存数据存储,也可用作2009年推出的键值数据库。这种开源非关系型解决方案采用内存数据结构来支持可扩展性和集群。它允许团队存储大型数据集而无需复杂的结构。Redis经常与其他数据存储解决方案结合使用,因为它可以用作缓存层。

由于功能性强且率先进入市场,关系型解决方案仍然占据了相当大的市场份额。事实上,新代表的引入使得每个人都能加强现有方法并不断推进新的解决方案。

收集有关不同类型数据库的所有重要细节对于做出正确的选择至关重要。有了明确的项目需求,团队就会寻找一个符合他们需求并支持解决方案效率的数据库。重要的是,这两种数据库类型都是可行的选择。了解主要差异对选择大有帮助。

非关系型数据库和关系型数据库之间的主要区别在于所应用的数据模式。如果关系型解决方案使用预定义模式并处理结构化数据,那么非关系型解决方案则应用灵活的模式以各种方式处理非结构化数据。重要的是要记住,这个因素通常可以解释数据库选择的其他不同规范。

结构化支持定位和访问数据的方式。如果团队选择关系架构,他们将继续使用基于表的结构。表格格式侧重于基于通用数据的链接和关联。非关系解决方案可能因多种结构而有所不同,包括键值、文档、图形或宽列存储。换句话说,它们为关系数据库中无法处理的结构数据带来了替代方案。

数据库选择还可能受到扩展非关系型数据库与关系型数据库的属性的影响。当负载增加应在单个服务器上完成时,关系型数据库是垂直可扩展的。非关系型解决方案在这里被证明更有效,因为水平扩展允许添加更多服务器,从而处理更高的流量。

利用受到良好保护且高度安全的解决方案始终至关重要。关系数据库符合ACID要求,因此更加安全,并且更容易限制对机密数据的访问。非关系类型的数据库被认为不太安全,但以出色的性能和可扩展性而闻名。

关系数据库被认为更适合用于数据分析和报告。大多数BI工具不允许您查询非关系数据库,但可以很好地处理结构化数据。当然,检查当前数据库的功能很重要,因为其中许多数据库不断引入新的替代方案。

在选择关系数据库而非非关系数据库时要考虑的另一个方面是将其与其他工具和服务集成的机会。团队始终必须检查其与应用于项目的其他技术解决方案的兼容性。集成需求正在急剧增长,以支持所有业务解决方案的一致性。

显然,数据库的选择因项目而异,但最重要的是它应该符合概述的需求。不会有糟糕的选择,因为每个项目都可以从不同的角度来解决。主要思想是选择一个可以带来效率并满足概述的特定项目要求的数据库。

比较关系数据库和非关系数据库的一个很好的方法是对其核心方面、主要优缺点和典型用例进行全面分析。考虑到本文中收集的所有细节,我们可以得出结论,当团队寻求动态查询、高安全性和跨平台支持时,关系数据库是一个不错的选择。如果可扩展性、性能和灵活性仍然是主要优先事项,那么最好选择非关系数据库。

THE END
1.浙江开放大学24秋商务数据分析形考作业2(第3章)辅导答案奥鹏作1.( )是指所获得的数据中与平均值的偏差超过两倍标准差的数据。A.缺失数据B.异常值C.冗余数据D.不一致数据2.( )是指对数据集中可能存在的重复数据、缺失数据及异常值进行必要的处理。A.商务数据统计特征处理B.商务数据集成C.商务数据清洗D.商务数据转换和规约3.以下哪项不是数据集中趋势指标?( )A.算术平均https://tieba.baidu.com/p/9340924227
2.面试题人工智能工程师高频面试题汇总:机器学习深化篇(题目+01 以下哪种激活函数因为其导数在某些区域接近于0而导致梯度消失问题? A. ReLU B. Sigmoid C. Tanh D. Leaky ReLU 答案: B 解析: Sigmoid函数的导数在输入值较大或较小时接近于0,这会导致梯度消失问题。 02 下列哪个函数在神经网络中可能引起梯度消失问题? https://blog.51cto.com/u_15343919/12843670
3.2024年秋季市场研究方法平时作业D:能更好地了解消费者内心深处的态度、动机12【单选题】 以下哪种方法属于机器观察法? A神秘购物法 B人文调查C:收视计数器D痕迹观察调查 13【单选题】 根据调查主体,得到的分类结果是? A横剖研究与纵贯研究 B统计调查与实地研究 C普查、抽样调查、典型调查与个案调查D:政府的市场调查、企业的市场调查、社会组织https://www.bilibili.com/read/cv40091435
4.及处理方法非结构化数据更适合处理以下哪个信息非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图象、声音、影视、超媒体等信息)。 非结构化WEB数据库主要是针对非结构化数据而产生的,与以往流行的关系数据库相比,其最https://blog.csdn.net/weixin_52189291/article/details/116275309
5.非结构化数据包括哪些内容内容丰富性:非结构化数据包含了大量的文本、图片、音频和视频等多媒体信息,信息内容丰富。 处理难度大:由于非结构化数据的多样性和不规则性,处理和分析这些数据通常需要更复杂的技术和方法。 二、非结构化数据的类型 非结构化数据主要包括以下几种类型: https://www.zhuflow.cn/news/information/1358.html
6.非结构化数据怎么用数据库分析帆软数字化转型知识库非结构化数据可以通过以下方式进行数据库分析:使用NoSQL数据库、进行数据预处理、借助大数据技术、使用数据可视化工具,如FineBI。NoSQL数据库特别适合处理非结构化数据。NoSQL数据库,如MongoDB和Cassandra,提供了灵活的数据模型,可以处理各种类型的非结构化数据,包括文本、图像和视频。通过NoSQL数据库,数据分析师可以更方https://www.fanruan.com/blog/article/507380/
7.以下那些数据属于非结构化数据的是?()声明: 本网站大部分资源来源于用户创建编辑,上传,机构合作,自有兼职答题团队,如有侵犯了你的权益,请发送邮箱到feedback@deepthink.net.cn 本网站将在三个工作日内移除相关内容,刷刷题对内容所造成的任何后果不承担法律上的任何义务或责任 https://www.shuashuati.com/ti/d13c328065ce4f07888ba39048aa7e72.html
8.IBMCloudObjectStorage在银行业非结构化数据存储嘲下的对象随着银行业IT技术的快速发展和业务的不断升级变革,业务应用系统产生的非结构化数据(包括文件、图片、音视频文件等)的规模也越来越大,银行业非结构化数据呈指数式爆发式增长。目前使用非结构化数据的主要系统包括内容管理平台、后督影像系统、身份验证、柜员办业务扫描件等需要用到影像图片,以及呼叫中心系统、电话客服的https://redhat.talkwithtrend.com/Article/242823
9.大数据金融第二章大数据相关技术数据处理流程 一 数据采集 大数据的采集是指在确定用户目标的基础上,对该范围内的所有结构化、半结构化、非结构化数据进行采集的过程。 (零) 数据来源 商业数据、互联网数据、传感器数据。 采集方法有以下三种 (一) 系统日志采集 1.作用:知道找谁解决问题,定位解决问题,了解客户需求进行个性化营销。 https://www.jianshu.com/p/d68251554c66
10.非结构化数据提取技术在统计工作中的应用摘要结构化数据和非结构化数据是大数据的两种类型,目前非结构化数据信息已达信息总量的85%以上,且每年以55%~65%的速度增长,统计工作受到大数据的冲击,日常总会遇到一些非结构化数据提取的难题,导致工作量加大,效率低下。本文对非结构化数据及其提取技术、大数据处理语言——Python语言进行学习研究,解决实际中遇https://tjj.changzhi.gov.cn/sjfx/202207/t20220704_2588893.html
11.客户关系管理的论文(精选13篇)它综合集成了数据库、数据挖掘技术、在线分析处理、internet技术、面向对象化技术、销售自动化技术以及其他相关技术成果,能够为企业的销售、客户服务、决策支持等领域提供一个业务自动化的解决方案,使企业具有一个面向客户的前台。这一层面为全面发展客户关系管理提供了强有力的支撑。简而言之,客户关系管理是以信息技术为https://mip.ruiwen.com/lunwen/1127667.html
12.“平民化”非结构数据处理腾讯云开发者社区在全球信息产业高速发展的背景下,IDC预测,2018 到 2025 年之间,全球产生的数据量将会从 33 ZB 增长到 175 ZB, 复合增长率27%,其中超过 80%的数据都会是处理难度较大的非结构化数据,如文档、文本、图形、图像、音频、视频等。非结构化数据在大数据时代的重要地位已成为共识。近些年,伴随着大数据存储、人工智能(https://cloud.tencent.com/developer/article/2214210
13.自动驾驶主流芯片及平台架构(一)硬件架构升级驱动芯片算力需求呈现指数级提升趋势,汽车需要处理大量图片、视频等非结构化数据,同时处理器也需要整合雷达、视频等多路数据。这些都对车载处理器的并行计算效率提出更高要求,具备AI能力的主控芯片成为主流。 数据、算力和算法是AI三大要素,CPU配合加速芯片的模式成为典型的AI部署方案,CPU提供算力,加速芯片提升https://www.yoojia.com/ask/17-11854442538290703783.html