如何对非结构化文本数据进行特征工程操作?这里有妙招!雷峰网

除此之外,还可以使用其他的标准操作,比如标记化、删除多余的空格、文本大写转换为小写,以及其他更高级的操作,例如拼写更正、语法错误更正、删除重复字符等。

由于本文的重点是特征工程,我们将构建一个简单的文本预处理程序,其重点是删除特殊字符、多余的空格、数字、无用词以及语料库的大写转小写。

wpt=nltk.WordPunctTokenizer()

defnormalize_document(doc):

#lowercaseandremovespecialcharacters\whitespaces

doc=doc.lower()

doc=doc.strip()

#tokenizedocument

tokens=wpt.tokenize(doc)

#filterstopwordsoutofdocument

filtered_tokens=[tokenfortokenintokensiftokennotinstop_words]

#re-createdocumentfromfilteredtokens

returndoc

normalize_corpus=np.vectorize(normalize_document)

一旦搭建好基础的预处理流程,我们就可以将它应用在语料库中了。

norm_corpus=normalize_corpus(corpus)norm_corpus

上面的输出结果应该能让大家清楚的了解样本文档在预处理之后的样子。现在我们来开始特征工程吧!

这也许是非结构化文本中最简单的向量空间表示模型。向量空间是表示非结构化文本(或其他任何数据)的一种简单数学模型,向量的每个维度都是特定的特征/属性。词袋模型将每个文本文档表示为数值向量,其中维度是来自语料库的一个特定的词,而该维度的值可以用来表示这个词在文档中的出现频率、是否出现(由0和1表示),或者加权值。将这个模型叫做词袋模型,是因为每个文档可以看作是装着单词的袋子,而无须考虑单词的顺序和语法。

fromsklearn.feature_extraction.textimportCountVectorizer

cv=CountVectorizer(min_df=0.,max_df=1.)

cv_matrix=cv.fit_transform(norm_corpus)

cv_matrix=cv_matrix.toarray()

cv_matrix

可以看到,文档已经被转换为数字向量,这样每个文档都由上述特征矩阵中的一个向量(行)表示。下面的代码有助于以一种更易理解的格式来表示这一点。

#getalluniquewordsinthecorpus

vocab=cv.get_feature_names()

#showdocumentfeaturevectors

pd.DataFrame(cv_matrix,columns=vocab)

词袋模型的文档特征向量

上面的表格应该更能助于理解!可以清楚地看到,特征向量中每个列(维度)都代表一个来自语料库的单词,每一行代表一个文档。单元格中的值表示单词(由列表示)出现在特定文档(由行表示)中的次数。因此,如果一个文档语料库是由N个单词组成,那么这个文档可以由一个N维向量表示。

一个单词只是一个标记,通常被称为单元(unigram)或者一元(1-gram)。我们已经知道,词袋模型不考虑单词的顺序。但是如果我们也想要考虑序列中出现的短语或者词汇集合呢?N元模型能够帮我们实现这一点。N-Gram是来自文本文档的单词记号的集合,这些记号是连续的,并以序列的形式出现。二元表示阶数为二的N-Gram,也就是两个单词。同理三元表示三个单词。N元词袋模型是普通词袋模型的一种拓展,使得我们可以利用基于N元的特征。下面的示例展示了文档中二元的特征向量。

#youcansetthen-gramrangeto1,2togetunigramsaswellasbigrams

bv=CountVectorizer(ngram_range=(2,2))

bv_matrix=bv.fit_transform(norm_corpus)

bv_matrix=bv_matrix.toarray()

vocab=bv.get_feature_names()

pd.DataFrame(bv_matrix,columns=vocab)

使用二元词袋模型的特征向量

在上面的例子中,每个二元特征由两个单词组成,其中的值表示这个二元词组在文档中出现的次数。

在大型语料库中使用词袋模型可能会出现一些潜在的问题。由于特征向量是基于词的频率,某些单词可能会在文档中频繁出现,这可能会在特征集上掩盖掉其他单词。TF-IDF模型试图通过缩放或者在计算中使用归一化因子来解决这个问题。TF-IDF即TermFrequency-InverseDocumentFrequency,在计算中结合了两种度量:词频(TermFrequency)和逆文档频率(InverseDocumentFrequency)。这种技术是为搜索引擎中查询排序而开发的,现在它是信息检索和NLP领域中不可或缺的模型。

在数学上,TF-IDF可以定义为:tfidf=tfxidf,也可以进一步拓展为下面的表示:

在这里,tfidf(w,D)表示单词w在文档D中的TF-IDF分数。Tf(w,D)项表示单词w在文档D中的词频,这个值可以从词袋模型中获得。idf(w,D)项是单词w的逆文档频率,可以由语料库中所有文档的总数量C除以单词w的文档频率df(w)的log值得到,其中文档频率是指语料库中文档出现单词w的频率。这种模型有多种变种,但是给出的最终结果都很相似。下面在语料库中使用这个模型吧!

fromsklearn.feature_extraction.textimportTfidfVectorizer

tv=TfidfVectorizer(min_df=0.,max_df=1.,use_idf=True)

tv_matrix=tv.fit_transform(norm_corpus)

tv_matrix=tv_matrix.toarray()

vocab=tv.get_feature_names()

pd.DataFrame(np.round(tv_matrix,2),columns=vocab)

基于TF-IDF模型的文档特征向量

文档相似性是使用从词袋模型或者tf-idf模型中提取出的特征,基于距离或者相似度度量判断两个文档相似程度的过程。

因此,可以使用在上一部分中提到的tf-idf模型提取出的特征,用其来生成新的特征。这些特征在搜索引擎、文档聚类以及信息检索等领域发挥着重要作用。

语料库中的配对文档相似性需要计算语料库中每两个文档对的文档相似性。因此,如果一个语料库中有C个文档,那么最终会得到一个C*C的矩阵,矩阵中每个值代表了该行和该列的文档对的相似度分数。可以用几种相似度和距离度量计算文档相似度。其中包括余弦距离/相似度、欧式距离、曼哈顿距离、BM25相似度、jaccard距离等。在我们的分析中,我们将使用最流行和最广泛使用的相似度度量:余弦相似度,并根据TF-IDF特征向量比较文档对的相似度。

fromsklearn.metrics.pairwiseimportcosine_similarity

similarity_matrix=cosine_similarity(tv_matrix)

similarity_df=pd.DataFrame(similarity_matrix)

similarity_df

文档对的相似性矩阵(余弦相似度)

仔细观察相似度矩阵可以清楚地看出,文档(0,1和6),(2,5和7)之间非常相似,文档3和4略微相似。这表明了这些相似的文档一定具有一些相似特征。这是分组或聚类的一个很好的案例,可以通过无监督的学习方法来解决,特别是当需要处理数百万文本文档的庞大语料库时。

聚类是利用无监督学习的方法,将数据点(本场景中即文档)分类到组或者cluster中。我们将在这里利用一个无监督的层次聚类算法,通过利用我们之前生成的文档相似性特征,将我们的玩具语料库中的类似文档聚合到一起。有两种类型的层次聚类方法,分别是凝聚方法(agglomerative)和分裂方法(divisive)。这里将会使用凝聚聚类算法,这是一种自下而上(bottomup)的层次聚类算法,最开始每个文档的单词都在自己的类中,根据测量数据点之间的距离度量和连接准则(linkagecriterion),将相似的类连续地合并在一起。下图展示了一个简单的描述。

连接准则决定了合并策略。常用的连接准则有Ward,Completelinkage,Averagelinkage等等。这些标准在将一对cluster合并在一起(文档中低层次的类聚类成高层次的)时是非常有用的,这是通过最优化目标函数实现的。我们选择Ward最小方差作为连接准则,以最小化总的内部聚类方差。由于已经有了相似特征,我们可以直接在样本文档上构建连接矩阵。

fromscipy.cluster.hierarchyimportdendrogram,linkage

我们语料库的连接矩阵

下面,把这个矩阵看作一个树状图,以更好地理解元素!

plt.figure(figsize=(8,3))

dendrogram(Z)

可以看到每个数据点是如何从一个单独的簇开始,慢慢与其他数据点合并形成集群的。从颜色和树状图的更高层次来看,如果考虑距离度量为1.0(由虚线表示)或者更小,可以看出模型已经正确识别了三个主要的聚类。利用这个距离,我们可以得到集群的标签。

fromscipy.cluster.hierarchyimportfcluster

max_dist=1.0

pd.concat([corpus_df,cluster_labels],axis=1)

可以清楚地看到,我们的算法已经根据分配给它们的标签,正确识别了文档中的三个不同类别。这应该能够给大家一个关于如何使用TF-IDF特征来建立相似度特征的思路。大家可以用这种处理流程来进行聚类。

也可以使用一些摘要技术从文本文档中提取主题或者基于概念的特征。主题模型围绕提取关键主题或者概念。每个主题可以表示为文档语料库中的一个词袋或者一组词。总之,这些术语表示特定的话题、主题或概念,凭借这些单词所表达的语义含义,可以轻松将每个主题与其他主题区分开来。这些概念可以从简单的事实、陈述到意见、前景。主题模型在总结大量文本来提取和描绘关键概念时非常有用。它们也可用于从文本数据中捕捉潜在的特征。

主题建模有很多种方法,其中大多涉及到某种形式的矩阵分解。比如隐含语义索引(LatentSemanticIndexing,LSI)就使用了奇异值分解。这里将使用另一种技术:隐含狄利克雷分布(LatentDirichletAllocation,LDA),它使用了生成概率模型,其中每个文档由几个主题组合而成,每个术语或单词可以分配给某个主题。这与基于pLSI(probabilisticLSI)的模型很类似。在LDA的情况下,每个隐含主题都包含一个狄利克雷先验。

上图中的黑色框表示利用前面提到的参数,从M个文档中提取K个主题的核心算法。下面的步骤是对算法的解释。

a)对于文档中的单词W:

i.对于主题T:

计算P(T|D),表示文档D中单词分配给T主题的比例。

计算P(W|T),表示在所有文档中,主题T包含单词W的比例。

ii.通过计算概率P(T|D)*P(W|T)重新分配单词W的主题T。

运行几个迭代之后,就能获得混合了每个文档的主题,然后就可以根据指向某个主题的单词生成文档的主题。像gensim或者scikit-learn这样的框架,使得我们能够利用LDA模型来生成主题。

大家应该记住,当LDA应用于文档-单词矩阵(TF-IDF或者词袋特征矩阵)时,它会被分解为两个主要部分:

使用scikit-learn可以得到如下的文档-主题矩阵。

fromsklearn.decompositionimportLatentDirichletAllocation

lda=LatentDirichletAllocation(n_topics=3,max_iter=10000,random_state=0)

dt_matrix=lda.fit_transform(cv_matrix)

features

可以清楚地看到哪些文档对上述输出中的三个主题贡献最大,可以通过如下的方式查看主题及其组成部分。

tt_matrix=lda.components_

fortopic_weightsintt_matrix:

topic=[(token,weight)fortoken,weightinzip(vocab,topic_weights)]

topic=sorted(topic,key=lambdax:-x[1])

topic=[itemforitemintopicifitem[1]>0.6]

print(topic)

print()

可以看到,由于组成术语不同,很容易区分这三个主题。第一个在讨论天气,第二个关于食物,最后一个关于动物。主题建模的主题数量选择是一门完整的课题,既是一门艺术,也是一门科学。获得最优主题数量的方法有很多,这些技术既复杂又繁琐,这里就不展开讨论了。

这里使用LDA法从词袋模型特征构建主题模型特征。现在,我们可以利用获得的文档单词矩阵,使用无监督的聚类算法,对文档进行聚类,这与我们之前使用的相似度特征进行聚类类似。

这次我们使用非常流行的基于分区的聚类方法——K-means聚类,根据文档主题模型特征表示,进行聚类或分组。在K-means聚类法中,有一个输入参数K,它制定了使用文档特征输出的聚类数量。这种聚类方法是一种基于中心的聚类方法,试图将这些文档聚类为等方差的类。这种方法通过最小化类内平方和来创建聚类。选择出最优的K的方法有很多,比如误差平方和度量,轮廓系数(SilhouetteCoefficients)和Elbowmethod。

THE END
1.非结构化数据的定义及处理方法结构化数据指有完整规则的数据模型定义,高度组织格式化,可用统一的结构逻辑表达的数据。如:日期、电话号码等。 非结构化数据指数据定义不完整或不规则,没有预定义的数据模型,无法用数据库二维表结构来逻辑表达的数据。简单来说就是字段可变的数据。常见的非结构化数据有文档、图片、音频、视频等。 https://blog.csdn.net/weixin_52189060/article/details/115489159
2.了解结构化数据与非结构化数据的差异有多种工具可用于处理和分析非结构化数据。这些工具有助于从各种数据格式中提取信息。突出显示处理非结构化数据的工具的最简单方法是根据它们处理的数据类型。 介绍 数据用途广泛,有多种形式,并且可以通过多种方式进行组织。一种常见的分类是结构化或非结构化数据,具有不同的存储、处理和分析方法。了解这些差异有助于https://www.51cto.com/article/789229.html
3.非结构数据怎么分析帆软数字化转型知识库非结构数据指的是不符合特定数据模型的数据类型,这些数据通常包括文本、图像、音频、视频等。与结构化数据不同,非结构数据没有预定义的数据模型,因此在存储、处理和分析时会面临更多的挑战。例如,文本数据需要进行分词和语义理解,图像数据需要进行特征提取和分类,视频数据需要进行帧处理和对象识别。 https://www.fanruan.com/blog/article/644632/
4.非结构化数据包括哪些内容视频数据:视频数据是包含图像和音频的复合数据类型,其处理和分析通常涉及视频识别、行为分析、情感识别等。 社交媒体数据:社交媒体数据是一种特殊的非结构化数据,包括来自社交媒体平台的用户生成内容,如帖子、评论、分享等。 三、非结构化数据的应用 非结构化数据的应用非常广泛,几乎涵盖了所有需要处理和分析大量文本、https://www.zhuflow.cn/news/information/1358.html
5.AnyShare内容数据湖:海量非结构化数据存储与处理的基石·可支持 EB 级的海量非结构化数据和元数据处理,高达 99.999% 的可靠性更强大的方案,更智能的体验 多样化的元数据管理 内容即时分析(Analysis-on-the-Fly) 内容统一检索 内容安全治理 文档管理需要多样的属性表达 ·海量非结构化数据难以描述,难以形成结构化的属性信息以提升识别、理解、查找、利用效率 业务系https://www.aishu.cn/cn/feature/content-lake
6.1+X大数据财务分析职业技能等级标准3.4 结构化数据 structured data 一种数据表示形式,按此种形式,由数据元素汇集而成的每个记录的结构都 是一致的并且可以使用关系模型予以有效描述。 3[GB/T 35295-2017,定义02.02.13] 3.5 非结构化数据 unstructured data 不具有预定义模型或未以预定义方式组织的数据。 https://www.scsw.edu.cn/kjx/info/1014/1054.htm
7.墨奇科技宣布完成2.5亿元B轮融资美通社PR图像、视频、音频等非结构化数据在大数据中占比巨大,而现有的方式往往针对特定类型数据来做训练,得到的模型并不通用。如何以统一的方式处理非结构化数据成为AI 未来发展的关键挑战。 墨奇科技开创性地发展了新型AI 知识数据库来解决这一问题。同时,墨奇科技将新型 AI 知识数据库的关键技术首先应用于生物识别这一行业,https://www.prnasia.com/story/319423-1.shtml
8.探索非结构化数据入湖方式及相关技术的最佳实践数字经济观察网数据转换:将非结构化数据转换为结构化格式,如将文本数据进行分词、标记化,将图像数据进行特征提取,将音频数据进行转录等。然后,将转换后的结构化数据导入数据湖中。 智能算法提取:自然语言处理(NLP)和计算机视觉(CV)等人工智能技术可以对文本和图像等非结构化数据进行语义理解、情感分析、图像识别和目标检测等处理,从而https://www.szw.org.cn/20230817/62871.html
9.人工智能技术在群聊类数据分析中的探索5.其他非结构化数据 如表情符号、红包等,也是群聊中常见的交流形式。 二、人工智能技术应用 为了有效处理群聊数据的碎片化、多样化等特性,人工智能技术发挥了重要作用,主要包括: 1.自然语言处理 通过NLP技术,我们能够对群聊中的文字数据进行多种处理,包括分词、词性标注、命名实体识别等。这些处理步骤可以帮助我们更好http://www.51testing.com/mobile/view.php?itemid=7800371
10.2022年中国知识图谱行业研究报告澎湃号·湃客澎湃新闻互联网的海量信息带有碎片化与非架构化特征。新兴互联网应用的蓬勃发展,让完整信息被分类分解为信息片段,信息被大量简化,从而导致信息本身不全面、内在逻辑不完整。同时,文本、图片、各类报表和音频、视频、HTML等非结构化数据广泛存在于互联网中。互联网企业需要在现有的存量业务中,收集碎片化信息,处理非结构化数据,挖掘https://www.thepaper.cn/newsDetail_forward_19458208
11.人工智能区块链算法这30个大数据热词你知道吗?非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图象、声音、影视、超媒体等信息)。 十七.数据清洗 数据清洗从名字上也看的出就是把“脏”的“洗掉”,指发现并纠正数据https://cloud.tencent.com/developer/article/1047249
12.如何将非结构化数据转化为结构化数据?将非结构化数据转化为结构化数据的过程通常称为数据抽取(data extraction),其目的是将非结构化数据中的有用信息提取出来,并按照预定的数据模型组织成结构化的数据格式。下面介绍一些常见的数据抽取方法: 自然语言处理(NLP):NLP是一种将自然语言转换为计算机可处理形式的技术,可以通过分词、词性标注、实体识别等技术将文https://www.gokuai.com/press/a189
13.中信证券非结构化数据处理平台建设实践中信证券综合应用OCR、NLP、RPA、搜索引擎、知识图谱等AI技术,在非结构化数据识别解析、自然语言理解与结构化处理、非结构化知识存储与检索等方面,开展公司级非结构化数据处理平台建设。 作者 中信证券股份有限公司信息技术中心 岳丰 王哲 刘殊玥 余怡然 方兴 https://www.secrss.com/articles/53891
14.非结构化数据提取技术在统计工作中的应用摘要结构化数据和非结构化数据是大数据的两种类型,目前非结构化数据信息已达信息总量的85%以上,且每年以55%~65%的速度增长,统计工作受到大数据的冲击,日常总会遇到一些非结构化数据提取的难题,导致工作量加大,效率低下。本文对非结构化数据及其提取技术、大数据处理语言——Python语言进行学习研究,解决实际中遇https://tjj.changzhi.gov.cn/sjfx/202207/t20220704_2588893.html
15.非结构化数据管理专家典型应用场景---非结构化数据中台,业务数据共享 ●解决业务系统数据“烟囱割裂”,孤岛数据难以支撑数字化时代业务需求。 ●解决应用系统海量数据存储、扩容、备份困难,以及数据安全等挑战。 ●为应用系统提供多样内容计算能力,诸如格式管理、内容安全、内容检索、内容识别等能力,为应用赋能。 https://www.linkapp.cn/products/42/0
16.数据架构:大数据数据仓库以及DataVault相反,非结构化数据是不可预见的,而且没有可以被计算机识别的结构。访问非结构化数据通常很不方便,想要查找给定的数据单元,就必须顺序搜索(解析)长串的数据。非结构化数据有很多种形式和变体。最常见的非结构化数据的表现形式也许就是文本了。然而无论如何,文本都不是非结构化数据的唯一形式。 https://www.ituring.com.cn/book/tupubarticle/11854
17.非结构化数据中心结构化数据与非结构化数据批处理计算框架MapReduce; 2. 海量数据存储层HDFS/HBase。 来自:百科 查看更多 → 上传数据至OBS及授权给ModelArts使用 对象存储服务(Object Storage Service)是一款稳定、安全、高效、易用的云存储服务,具备标准Restful API接口,可存储任意数量和形式的非结构化数据。 产品详情立即注册一元 域名华为 云桌面 [https://www.huaweicloud.com/theme/103294-3-F