什么是非结构化数据

非结构化数据按照类型可分为文字、图像、视频和音频四类。文字类非结构化数据往往存在于各类文档、电子邮件、社交媒体帖子中,其内容复杂多变。图像类数据包含从简单的数字照片到复杂的医学扫描图像等。视频和音频数据则通常包含丰富的情境信息,如记录的言语、背景音乐等。这些数据共同特点在于格式多样、数量庞大且含有丰富的潜在信息。

随着人工智能技术的进步,未来非结构化数据的处理能力将不断提升。机器学习和深度学习技术的应用,将使得非结构化数据分析更加精准高效。数据隐私保护也将成为一个热点议题,如何在挖掘与保护之间找到平衡点,是非结构化数据未来发展的关键。

非结构化数据是指那些不符合传统数据库模式或表格形式的数据,它们没有固定的格式或组织形式。这类数据可能包括文本文件、音频、视频、图像以及社交媒体帖子等等。

非结构化数据的特点有哪些?

非结构化数据的特点包括难以按传统的行和列的方式进行组织,无法通过常规的结构化查询语言进行处理。这类数据可能包含丰富的信息,但需要特定的工具和技术才能够进行挖掘和利用。

为什么非结构化数据重要?

非结构化数据在当今信息时代扮演着重要的角色。随着互联网的发展,非结构化数据的数量和比例持续增加,这些数据中蕴含着许多有用的信息。通过有效地挖掘和分析非结构化数据,企业和组织可以获得深入的见解,从而指导决策、改进产品和服务,甚至发现新的商业机会。

THE END
1.用机器学习解决非结构化数据问题随着非结构化数据变得越来越普遍并且与日常业务决策和运营更加相关,基于 ML 的质量控制可提供急需的保证,确保您的数据相关、准确且有用。当您不关心数据质量时,您可以专注于使用数据来推动业务发展。 想想当您控制数据时出现的可能性——或者更好的是,让 ML 为您处理工作。https://zhuanlan.zhihu.com/p/591740592
2.软件系统架构黄金法则13:非结构化数据存储架构法则随着数据的增长和复杂性,非结构化数据存储技术变得越来越重要。非结构化数据包括文本、图像、音频、视频和其他不符合结构化数据库的数据。传统的结构化数据库无法有效地存储和管理非结构化数据,因此需要一种新的存储架构来处理这些数据。 本文将涉及非结构化数据存储架构的核心概念、算法原理、最佳实践、实际应用场景和工https://blog.csdn.net/universsky2015/article/details/135778787
3.什么是非结构化数据?我们所处理的数据分为三类,分别是规格化数据、半结构化数据以及非结构化数据,其中非结构化数据的定义为:呈现出不规则且无明显结构特征的数据。 -规格化数据:数据与字段相对应,数据以表格和数据集形式存在。 -半结构化数据:这种数据形态介于规格化数据和非结构化数据之间,方法是结合不明晰的规则来补足规格化数据的缺陷。https://www.filez.com/news/detail/faee08ab6bdc85c2d6216e4773bcc01f.html
4.数据中台的技术架构有哪些帆软数字化转型知识库数据中台的技术架构包括:数据接入层、数据存储层、数据处理层、数据服务层、数据安全层、数据运营层。数据接入层是数据中台技术架构中的第一步,其主要功能是从各种数据源中采集和接入数据,包括结构化数据、半结构化数据和非结构化数据。通过数据接入层,企业能够将不同来源的数据统一接入到数据中台,确保数据的全面性和https://www.fanruan.com/blog/article/639918/
5.HitachiVantara吴卫平:以非结构化数据存储管理解决方案,推动企业在非结构化数据存储管理上,Hitachi Vantara并非仅是推出一个单一的产品,而是结合Hitachi Vantara的技术和运营经验,为用户提供一个整体的框架;同时,结合Hitachi在IT领域长期的数据采集、分析能力,使得平台+业务构成为一个完整的解决方案,帮助用户实现业务重构,推动企业的数字化转型。这即是Hitachi Vantara的宏大愿景。 https://www.51cto.com/article/625502.html
6.软考高级——信息系统项目管理师(第4版)思维导图模板越来越多的产品中嵌入了智能化元器件,使产品具有越来越强的信息处理功能 产业信息化指农业、工业、服务业等传统产业广泛利用信息技术,大力开发和利用信息资源,建立各种类型的产业互联网平台和网络,实现产业内各种资源、要素的优化与重组,从而实现产业的升级。 https://www.processon.com/view/654c455f8f11b40fe56ece43
7.大数据技术原理与应用期末复习知识点全总结(林子雨版2.数据存储和管理层面 功能:利用分布式文件系统、数据仓库、关系数据库、NoSQL 数据库、云数据库等,实现对结构化、半结构化和非结构化海量数据的存储和管理 3.数据处理与分析层面 功能:利用分布或并行编程模型和计算框架,结合机器学习和数据挖掘算法,实现对海量数据的处理和分析;对分析结果进行可视化呈现,帮助人们更好https://developer.aliyun.com/article/1418435
8.《华为数据之道》读书笔记:第5章面向“联接共享”的数据底座建设1 支撑非数字原生企业数字化转型的数据底座建设框架 华为公司通过建设数据底座,将公司内外部的数据汇聚在一起,对数据进行重新组织和联接,让数据有清晰的定义和统一的结构,并在尊重数据安全与隐私的前提下,让数据更易获取,最终打破数据孤岛和垄断。 ? 通过数据底座,主要可以实现如下目标: https://xie.infoq.cn/article/ca685bfdce0341b1280fb71b0
9.Milvus旨在帮助用户实现海量非结构化数据的近向量搜索引擎 Milvus 旨在帮助用户实现海量非结构化数据的近似检索和分析。单个 Milvus 实例可处理十亿级数据规模,而对于百亿或者千亿规模数据的需求,则需要一个 Milvus 集群实例,该实例对于上层应用可以像单机实例一样使用,同时满足海量数据低延迟、高并发业务需求。集群内部处理请求转发、读写分离、水平扩展、动态扩容,https://juejin.cn/post/6844904105672966158
10.非结构化数据提取技术在统计工作中的应用摘要结构化数据和非结构化数据是大数据的两种类型,目前非结构化数据信息已达信息总量的85%以上,且每年以55%~65%的速度增长,统计工作受到大数据的冲击,日常总会遇到一些非结构化数据提取的难题,导致工作量加大,效率低下。本文对非结构化数据及其提取技术、大数据处理语言——Python语言进行学习研究,解决实际中遇https://tjj.changzhi.gov.cn/sjfx/202207/t20220704_2588893.html
11.如何把非结构化的数据转结构化?2. 非结构化数据转化成结构化数据 3. 构建知识图谱、构建搜索及推荐引擎 2.如何建立全息档案? 建立全息档案的技术框架包括 Web 索引层、知识图谱层和应用层三部分。 Web 索引层是我们逐步做出的一个「搜索引擎」,每天不断爬取互联网中的网页,留下可能与我们感兴趣的机构——我们称为种子机构——相关的部分,经过https://www.jianshu.com/p/d41516910ce2
12.了解结构化数据与非结构化数据的差异数据用途广泛,有多种形式,并且可以通过多种方式进行组织。一种常见的分类是结构化或非结构化数据,具有不同的存储、处理和分析方法。了解这些差异有助于从任何数据集中提取有价值的见解。 结构化数据与非结构化数据:主要区别 结构化和非结构化数据在许多方面都有所不同。两者都使用不同的工具和方法来处理和分析信息https://www.360doc.cn/article/68899713_1124424478.html
13.干货!非结构化数据分析的10个步骤腾讯云开发者社区4. 存储数据准备 数据准备意味着要处理在数据中删除所有的空白,格式化等问题。现在,当企业拥有所有的数据时,不管是否对业务有用,一旦准备好数据,就可以开始整理一堆有用的数据,并索引非结构化数据。 5.采用数据堆栈和存储技术 消除无用的数据后,堆叠数据是理想的下一步。请务必使用最新的技术来保存和堆叠数据,以便https://cloud.tencent.com/developer/article/1008189