金融咨询网

一、大数据的特点对企业经营管理的重要意义

1.大数据的特点第一,数据规模巨大且增长迅猛从TB级别跃升到PB乃至EB级别。

第二,数据类型繁多:既包含传统的结构化数据(如文本数据),也包含越来越多的非结构化数据(如网络日志、音频、视频、图片、传感器数据等)。这些数据对处理分析能力提出了更高的要求。

第三,数据价值极为关键但不易挖掘。由于海量数据中价值密度相对较低,但数据的商业价值却极为重要。如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是目前信息化亟待解决的难题。

2.大数据对企业经营管理的重要意义伴随着传统的商业智能系统向纵深应用的拓展,企业决策已经越来越依赖于数据而非直觉经验。然而,传统的数据仓库对于数据分析通常是建立在关系模型的基础之上,面向结构化数据处理,各分析主题之间的关系在系统内已经被创立,而且用以分析的数据也大都是企业自身信息系统中产生的运营数据,这些数据大都是标准化、结构化的。事实上,这些数据只占到了企业所能获取的数据中的15%。

对于企业而言,85%的数据属于广泛存在于社交网络、物联网、电子商务等媒介的非结构化数据,这些非结构化数据的产生往往伴随着社交网络、移动计算、传感器等新兴渠道和技术的不断涌现和应用。企业用以分析的数据越全面,分析的结果就越接近于真实。大数据分析意味着企业能够从这些新的数据中获取新的洞察力,并将其与已知业务的各个细节相融台。在大数据时代,企业进行数据分析的背景也发生了变化:(1)要涵盖数据规模;(2)要能真实精确地挖掘商业价值,快速分析响应;(3)要面向丰富多样的数据类型,包括结构化和非结构化的数据。这使得传统解决方案在新的需求面前束手无策。

二、大数据分析的解决方案

(2)HiveHive是Facebook开源的基于Hadoop的数据仓库平台。通过Hive,可以方便地进行海量数据提取、转化、加载。Hive定义了一个类似于SQL的查询语言HQL,能够将用户编写的SQL转化为相应的MapReduce程序。当然,用户也可以自定义Mapper和Reducer来完成更为复杂的分析工作。作为互联网领域应用最为广泛的开源数据仓库。基于MapReduce的Hive在扩展性和容错性方面有强大的优势,其前景被业界一致看好。但是相比传统并行数据仓库,Hive在存储引擎支持、执行引擎高效化以及多样化接口等方面,有待进一步发展。

[!--empirenews.page--]2.大数据分析的经典案例大数据分析平台在文本挖掘、模式识别、路径分析、聚类分析等方面具有天然优势。不同厂商的产品和开源系统都力图针对不同的应用场景推出对应的算法包来提供诸如产品营销、用户消费习惯分析、优质客户甄别、防欺诈侦测、购物篮分析等各个领域的高效解决方案。大数据分析平台已经在很多行业发挥了重要作用,具体成功的商业案例如下。

(1)沃尔玛沃尔玛是最早利用大数据而受益的企业之一。通过对消费者的购物行为等非结构化数据进行分析,沃尔玛成为最了解顾客购物习惯的零售商,并创造了“啤酒与尿布”的经典商业案例(尿布与啤酒这两种看似风马牛不相及的商品摆在一起使尿布和啤酒的销量大幅增加)。

(2)Facebook社交媒体监测平台Datasift监测了FacebookIPO当天Twitter上的情感倾向与Facebook股价波动的关联。例如,在Facebook开盘前Twitter上的情感逐渐转向负面,25分钟之后Facebook的股价便开始下跌;而当Twilter上的情感转向正面时,Facebook股价在8分钟之后也开始了回弹。通过数据分析最终得到的结论是:Twitter上每一次情感倾向的转向都会影响Facebook股价的波动,延迟情况通常只有十几分钟。

(3)沃尔沃在沃尔沃集团,通过在卡车产品中安装传感器和嵌入式CPU,使得从刹车到中央门锁系统等形形色色的车辆使用信息源源不断地传输到沃尔沃集团总部。对这些数据进行分析.不仅可以帮助企业制造更好的汽车,还可以帮助客户获取更好体验一一这些数据正在被用来优化生产流程,以提升客户体验和提升安全性,以及让产品部门提早发现产品潜在的问题,并在这些问题发生之前提前向客户预警。

(4)中国移动中国移动集团山西有限公司通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。以最快捷的方式将捕捉的市场变化推送给指定负责人:例如:一个客户使用最新款的诺基亚手机,每月准时缴费,平均一年致电客服3次,使用WEP和彩信业务。如果按照传统的数据分析,这可能是一位满意度非常高、流失概率非常低的客户。但是,当搜集了来自微博、社交网络等媒介的客户数据后,这位客户的真实情况可能是:客户在国外购买的这款手机,手机中的部分功能在国内无法使用,在某个地点手机经常断线,彩信无法使用一一他的使用体验极差,正在面临流失风险。

三、大数据在银行业的应用场景

随着银行业务的载体与社交媒体、电子商务的融合越来越紧密,仅对原有15%的结构化数据进行分析已经不能满足发展的需求。企业需要借助大数据战略打破数据边界,囊括85%的大数据分析,来构建更为全面的企业运营全景视图。以科技引领业务发展,未来银行也同样需要借助由大数据构建的企业经营全景视图来进行风险管理、产品营销、业务创新等活动,进而寻找最优的模式支持商业决策。下文阐述了大数据在银行业应用的几个场景。

银行可以通过大数据分析平台,接入客户通过社交网络、电子商务终端设备等媒介产生的非结构化数据,构建全面的客户视图,根据用户行为对用户进行聚类分析,进而可以有效的甄别出优质客户、潜力客户以及流失客户。

事例二:客户流失分析。借助大数据平台搜集到客户行为记录,通过对已流失客户的行为进行分析.找到客户流失发生时的关键路径,进而能够利用流失客户的行为模式有效定位有流失倾向的客户,以便银行工作人员能够在客户流失前进行挽回工作。

2.营销管理借助大数据分析平台,通过对形式多样的用户数据(用户消费数据、浏览记录、购买路径等)进行挖掘、追踪、分析,将不同客户群体进行聚类,有助于获取用户的消费习惯、风险收益偏好等特征信息。从而根据不同客户特性打造个性化的产品营销服务方案,将最适合的产品服务推介给最需要的客户。以主动营销和个性化营销打破传统无差异的、被动的产品服务营销方式。大数据的有效使用,不仅可以提升银行产品的精准营销水平,而且可以提升客户对银行服务的认可程度以及客户经理在营销过程中的专业程度。

例如,银行针对不同的客户分类推荐相应的理财产品,根据客户的购买习惯和风险偏好进行产品组合营销;根据客户的产品清单和浏览记录进行路径分析,主动推送关联产品营销等,真正做到个性化的主动营销服务。

在银行产品同质化较为严重的现状下,谁能首先运用“大数据”进行灵活的营销管理,准就有更多的机会在竞争中拔得头筹。

3.风险管理随着银行业务的快速发展,银行经营者必须有效地甄别风险、防范风险和控制风险。风险管理成为银行稳健发展至关重要的一环。社会化媒体的互动、实时的传感器数据、电子商务和其他新的数据源,正给银行经营带来一系列的挑战。仅仅借助传统的解决方案,无法全面进行风险管理。大数据分析帮助银行了解客户的自然属性和行为属性,结合客户行为分析、客户信用度分析、客户风险分析以及客户的资产负债状况,建立完善的风险防范体系。

事例:Wonga是英国一家小额贷款公司,他们利用海量数据挖掘算法来做一些贷款业务。Wonga对过去客户的各种碎片化信息进行数据获取和整理,用大量的数据串成了客户特征的全貌,同时根据不良贷款等风险信号不断完善调整模型,有效控制风险。如今它已获得了5亿美金的年利润,其风险管理能力也获得业界的认可。[!--empirenews.page--]

四、大数据背景下银行业的发展及面临的挑战

1.未来银行业的发展趋势(1)未来银行业更加倾向于零售营销客户是驱动零售企业生存发展的核心资源。在银行业经营战略转变以及利率逐步市场化的背景下,银行依赖存贷款利差创造利润的盈利方式也必须调整。零售及中间业务在未来银行经营中会占有越来越大的比重。而绝大部分客户数据通常是用户在社交网络、移动终端设备等媒介留下的海量碎片化数据,如何收集数据并对客户的行为属性进行有效的分析,是支撑以客户为中心发展模式的重要手段。在日益激烈的行业竞争中,构建以客户为中心的精确的银行运营全景视图就显得尤为重要。

(2)未来银行更加倾向于科技创新创新是银行实现差异化发展的驱动力。目前银行产品、银行的经营管理系统都面临着同质化严重的问题,因此需要通过技术创新来不断增强银行业的核心竞争力一一帮助银行改进金融系统,改善与顾客之间的交互,改进并简化客户的银行业务体验。大数据时代为银行业务发展和技术创新带来了新机遇。

(3)未来银行更加倾向于数据分析挖掘很多互联网公司例如亚马逊、Google、腾讯,更愿意将自己定位为数据企业。因为信息时代,数据成为经营决策的强有力依据,给企业带来了发展和引领行业的机遇。银行也同样拥有丰富的“数据矿藏”,不仅存储处理了大量结构化的账务数据,而且随着银行渠道快速渗透到社交网络、移动终端等媒介,海量的非结构化数据也在等待被收集和分析。对于银行业来说,大数据意味着巨大的商机,可强化客户体验,提高客户忠诚度。形象地说,“数据的收集能力+数据的分析能力=企业智商”,这关乎商业决策的迅速和准确,关乎企业的生存和发展。

2.银行业在大数据背景下面临的挑战(1)构建银行业大数据分析平台传统商业智能、数据仓库解决方案致力于解决结构化数据的整合分析,由于结构化数据的存储组织有章可循,相对简单,因而在BI分析中数据模型的构建也较为简单。但是在大数据背景下,传统商业智能、数据仓库解决方案已经捉襟见肘。首先,数据源方面,半结构、非结构化数据的大量涌现,使得传统的数据仓库存储组织此类数据变得无能为力;其次,在商业智能分析方面,由于大数据大都是一些类型丰富的碎片化数据,没有相对固定的模式,而且价值密度相对较低但却极为重要,使得在大数据环境下进行数据分析的模式和方法相对复杂。因而构建银行大数据分析平台是一项从无到有、富有挑战且意义深远的工作。对银行的创新能力,精细化、专业化经营管理以及高效决策支持都具有重大意义一。

现阶段,已被业界广泛使用的开源的海量数据处理系统(Hive)使得很多公司能够从零开始快速搭建大数据系统,为银行构建大数据处理平台提供了实验性平台保障。

大数据技术的发展带来企业经营决策模式的转变,驱动着行业变革,衍生出新的商机和发展契机,驾驭大数据的能力已被证实为领军企业的核心竞争力,这种能力能够帮助企业打破数据边界,绘制企业运营全景视图,做出最优的商业决策和发展战略——金融行业在大数据浪潮中,要以大数据平台建设为基础,夯实大数据的收集、存储、处理能力,重点推进大数据人才的梯队建设,打造专业、高效、灵活的大数据分析团队。不断提升企业智商.挖掘海量数据的商业价值,从而在数据新浪潮的变革中拔得头筹,赢得先机。

THE END
1.我的最佳办公搭子——小浣熊,助力高效分析项目进度后来了解到小浣熊办公助手,它可以提高效率,自动化处理流程,支持更复杂的分析,并能处理更大规模的数据集,并且提供了强大的数据清洗、分析、可视化功能,能提升数据分析的准确性和可重复性。 本文以项目经理的角度,来分析项目人员的开发情况,确保任务完成进度。 https://blog.51cto.com/u_15885506/12852207
2.可怕的错误持续了八年,但是作者早就退出了科学界我们的马拉松授课专注于表达量矩阵的数据处理技巧传授,包括表达量芯片,转录组 测序, 单细胞转录组,都是一脉相承的。 每个知识点都有对应的练习题安排给学员来考验大家是否掌握差异分析和富集分析的精髓,其中表达量芯片环节大家完成作业还是比较积极的,后面的转录组和单细胞转录组测序数据分析就开始有人掉队了,毕竟生物https://cloud.tencent.com/developer/article/2479271
3.fastgraphrag探索(4)我把模型服务干崩了!“insert代码看完之后,我们代码跑起来先。”小胖坐在他那有些凌乱但舒适的办公桌前,自言自语道。今天,他要处理从某财整理的一些研报数据,用来测试模型效果。这些数据集将帮助他验证最近修改的模型参数是否有效。 ? ? 按照官方example中的指导,小胖精心调整了模型的相关参数,编写了一段代码,通过for循环逐一写入https://www.lllyyb.com/archives/i1dxtN12
4.一文了解Trimmomatic及使用方法Trimmomatic是一个处理高通量测序数据常用的工具,尤其是对于 Illumina 测序数据。它提供了包括去除接头序列(adapter trimming)、质量过滤(quality filtering)、去除低质量序列(trimming low-quality bases)等在内的功能,以帮助提高序列数据的质量和可靠性。值得一提的是,虽然刊载Trimmomatic的杂志<Bioinformatics>影响因子只有https://www.bilibili.com/opus/1012119527359512576
5.震惊!不会代码也可以实现机器学习一键自动化分析?帮助临床研究者跨越临床研究设计和数据分析的鸿沟,让天下没有难发的SCI。做以“研究设计和数据分析思路为导向的临床研究”,最大程度挖掘临床数据价值,将临床经验转换为医学证据,为临床研究者提供“以临床科学家为核心的临床研究一体化解决方案”,实现从“https://mp.weixin.qq.com/s?__biz=MzI2OTQyMzc5MA==&mid=2247522082&idx=2&sn=545ec48e0d235bec10435c25b1affefa&chksm=eb030150f7b218aee6225982019afdc9db2e2abdf30a6efcdc14cff231e1277d116cae44d367&scene=27
6.不懂这25个名词,好意思说你懂大数据?这个词听起来几乎就是「SQL,结构化查询语言」的反义词,SQL 是传统的关系型数据管理系统(RDBMS)必需的,但是 NOSQL 实际上指的是「不止SQL」。 NoSQL实际上指的是那些被设计来处理没有结构(或者没有「schema」,纲要)的大量数据的数据库管理系统。NoSQL 适合大数据系统,因为大规模的非结构化数据库需要 NoSQL的这种https://gxq.guiyang.gov.cn/zjgxq/zjgxqxyzs/zjgxqxyzsdsjqy/201710/t20171013_17120534.html
7.大数据处理技术详解Hadoop生态系统全面剖析OSCHINAHBase:一个开源的非关系型分布式数据库(NoSQL),它基于 HDFS,用于存储非结构化和半结构化大数据。 Hive:一个构建在 Hadoop 之上的数据仓库工具,它可以将结构化数据文件映射为一张数据库表,并提供简单的 SQL 查询功能。 Pig:一个高级过程语言,用于简化 Hadoop 上的数据处理任务。 https://my.oschina.net/emacs_8501574/blog/16536759
8.Pig大规模数据分析平台原理与代码实例讲解大数据AI人工智能在当今大数据时代,海量的结构化和非结构化数据不断产生和积累。这些数据蕴含着巨大的商业价值和洞见,但如何高效地处理和分析这些数据成为了一个巨大的挑战。Apache Pig是一个用于大规模数据分析的平台和编程框架,旨在解决这一挑战。 Pig是基于Apache Hadoop构建的,它提供了一种高级的数据流语言(Pig Latin),使开发人员https://download.csdn.net/blog/column/12507777/139729287
9.大数据开发笔记江阴雨辰互联MapReduce:它是一种并行编程模型在大型集群普通硬件可用于处理大型结构化,半结构化和非结构化数据。 HDFS:Hadoop分布式文件系统是Hadoop的框架的一部分,用于存储和处理数据集。它提供了一个容错文件系统在普通硬件上运行。 Hadoop生态系统包含了用于协助Hadoop的不同的子项目(工具)模块,如Sqoop, Pig 和 Hive。 https://www.yc00.com/news/1693587585a724437.html
10.大数据范文12篇(全文)互联网数据已超出关系型数据库的管理范畴, 电子邮件、超文本、博客、标签 (Tag) 以及图片、音视频等各种非结构化数据逐渐成为大数据的重要组成部分, 而面向结构化数据存储的关系型数据库已经不能满足数据快速访问、大规模数据分析的需求, 随之而来, 一系列新型的大数据管理技术和工具应运而生。 https://www.99xueshu.com/w/ikeyu2arcqua.html
11.Pig教程Pig教程UDF的:Pig提供了使用其他编程语言(例如Java)创建用户定义函数并将其调用或嵌入Pig脚本的功能。 处理各种数据: Apache Pig分析所有结构化和非结构化数据。它将结果存储在HDFS中。Apache Pig 与 MapReduce 下面列出的是Apache Pig和MapReduce之间的主要区别。Pighttps://www.hadoopdoc.com/pig/pig-tutorial
12.大数据处理流程通常?家最为熟知是 MySQL、Oracle 等传统的关系型数据库,它们的优点是能够快速存储结构化的数据,并?持随机访问。但?数据的数据结构通常是半结构化(如?志数据)、甚?是?结构化的(如视频、?频数据),为了解决海量半结构化和?结构化数据的存储,衍?了 Hadoop HDFS 、KFS、GFS 等分布式https://wenku.baidu.com/view/99b3bcf9d25abe23482fb4daa58da0116c171f05.html
13.平安云对象存储OBS(Object Based Storage)是基于大规模分布式、高并发存储框架的云存储服务,适用于存储大量任意大小、任意格式的非结构化数据,如视频、音频、文档、图像、网页内容等。可以广泛应用于内容存储与分发、大数据分析、数据归档与容灾备份等场景。 对象/文件(Object) https://pinganyun.com/ssr/help/general/glossary?menuItem=glossary
14.基于金山云的Hadoop大数据平台当前,数据驱动业务是推动企业业务创新,实现业务持续增长的源动力。基于Hadoop HDFS和YARN的大规模分布式存储和计算使得企业能在合理投资的前提下,实现对结构化数据和非结构化数据的离线分析和实时分析。而云计算按使用付费和弹性的特性使得企业大数据平台项目可以在更少https://www.ksyun.com/developer/article/6884.html
15.Pig和Hive的区别有哪些问答Pig和Hive是两种用于大数据处理的工具,主要用于Hadoop生态系统。它们的区别如下: Pig是一种数据流语言,类似于SQL,被用于数据处理和分析。Pig Latin是Pig的脚本语言,可以用于编写数据处理逻辑。而Hive是一种基于SQL的查询语言,允许用户以类似于SQL的方式查询和分析数据。 Pig主要用于数据流处理,可以处理非结构化和半结构https://www.yisu.com/ask/56211002.html
16.Pig编程指南像Hadoop这样的新型数据处理系统的发展促使了已经存在的工具和语言对Hadoop的移植,以及新工具(如Apache Pig)的构造。像Pig这样的工具为数据使用者提供了一种较高层次的抽象,为使用者提供了一种可以使用到Hadoop强大的处理能力和灵活性的方式,而并不需要他们用低层Java代码来编写大量的数据处理程序。 https://www.epubit.com/bookDetails?id=N31127
17.《大数据技术与应用》核心考点10.大数据采集技术概念:大数据采集技术是指通过RFID数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化,、非结构化的海量数据。 11.大数据的数据源:运营数据库、社交网络和感知设备 12.数据预处理包含的部分:数据清理、数据集成和变换及数据规约 https://www.modb.pro/db/438644
18.《数据采集与预处理》教学教案(全).doc3.数据采集的方法(1)数据采集的新方法① 系统日志采集方法② 网络数据采集方法:对非结构化数据的采集③ 其他数据采集方法(2)网页数据采集的方法互联网网页数据具有分布广等大数据的典型特点,需要有针对性地对互联网网页数据进行采集、转换、加工和存储。互联网网页数据是大数据领域的一个重要组成部分,为互联网和金融https://max.book118.com/html/2022/0713/6102233133004211.shtm