易斌教授:AI和围术期大数据驱动下的麻醉管理围术期麻醉学麻醉教授患者

麻醉多目标优化是必然趋势:借助算法可以完成RCT无法应用的研究,建议尽早介入。

易斌教授

陆军军医大学第一附属医院

(西南医院)

一、背景

本团队AI和围术期大数据研究成果:

1.围术期大数据研究团队及成果

于2018年和中科院重庆绿色智能研究院建立合作,并受邀在全国和多个省市专题汇报30余次。目前已经形成多项围术期危重症的预警模型和干预知识图谱,已申报发明专利13项,获批4项。

发表了中华麻醉学杂志第一篇AI专家论坛(2022年)、第一篇AI的述评(2019年)、第一篇AI的论著;论著并代表中华麻醉学(唯一)入选2020年中华系列杂志百篇优秀论文、中国科协优秀论文;《围术期大数据的治理和算法应用》通过人民卫生出版社的选题单。AI算法方面SCI论著10余篇。

3.研发围术期危重症预测和干预提示系统

(一种新监护模式)世界法律日

(1)手术间工作单元

◆患者基本信息展示、生理参数监测、指征录入

◆并发症风险计算及预警、风险评估、决策支持

(2)指挥中心工作站

◆患者基本信息展示、生理参数监测、实时手术视频展示

◆手术流程显示、手术室列表展示

◆患者病历、检验信息、检查信息

◆知识图谱

该系统目前已经获“中华人民共和国医疗器械注册证”、“计算机软件著作权登记证书”和“软件产品证书”,并通过了严格的第三方测试,保障了场景数据、网络、系统安全,入选重庆市卫健委数字健康应用场景。

二、围术期大数据驱动下的麻醉管理研究势在必行

1.围术期大数据驱动下的麻醉管理研究势在必行的原因包括如下三方面:

(1)外科管理开始高度重视多目标优化;麻醉学管理需要围术期大数据支撑,才能有效的实现多目标优化;

(2)围术期数据的特点/问题与医学其他领域很大区别(特殊性):研究难度明显大于医学其他领域,更加需要早期介入,等待意味差距加大;

(3)围术期麻醉管理的动态、持续做正确决策很难、很累(围术期大数据基础上的强化学习有望实现智能化麻醉管理医疗决策支持)。

多目标优化包括循环管理、容量管理、麻醉深度管理、手术方式、基础疾病管理、疼痛管理、心理管理等;

单目标的优化,可能有不可控的结果(例如某项研究以阿片类药物为目标,对疼痛满意度提高6%,然而术后安全事件增加223%)。

3.需要注意目前ERAS研究的重要瓶颈

多目标优化研究可能有不同的结果;各ERAS措施之间,可能存在明显相互影响;目前ERAS的研究均是针对单个影响因素RCT研究,可能会产生合成谬误。

重要词汇:合成谬误(FallacyofComposition)是由萨缪尔森提出来的。对局部说来是对的东西,仅仅由于它对局部而言是对的,便说它对总体而言也必然是对的,是一种谬误。在经济学领域中,十分肯定的是:微观上而言是对的东西,在宏观上并不总是对的;反之,在宏观上是对的东西,在微观上可能是十分错误的。

ERAS措施太多,有过度嫌疑:明显加重医护工作量、浪费资源;期望去除“无效”部分;

ERAS的RCT研究都是单目标优化:传统RCT研究无法完成多目标优化(分组问题),需要新的研究方法;

4.围术期大数据研究的关键点

(1)迄今无公开的多中心围术期大数据集

▲围术期大数据采集(多维度生命体征大数据):时序同步处理方法、采样频率优化方法;

▲围术期大数据高维度问题及其处理;

▲围术期大数据高噪音问题及其处理;

▲围术期大数据的数据缺失问题及其处理;

▲围术期大数据多指标非同量纲问题。

(2)算法研究已进入瓶颈

▲围术期大数据核心指标分析(因果知识体系构建、候选指标分析方法);

▲围术期大数据算法应用和优化;

(3)标准化流程

▲基于围术期大数据的预测类问题的算法应用

▲基于围术期大数据的分类、诊断和辅助诊断类问题的算法应用

▲基于围术期大数据的辅助医疗决策支持类问题的算法应用

▲基于围术期大数据的医疗成本分析,效果评价类问题的算法应用

三、麻醉学围术期数据相对于其他学科疾病数据,其治理存在如下几方面难度

难题一:麻醉学围术期数据的结局并非最终临床结局

■麻醉医师最多只能关心围术期,对患者1个月/3个月或者远期预后并不关心;

■影响竞争力:被其他学科专家认为在疾病诊治全过程中的作用较弱。

难题二:麻醉学围术期数据呈现高维度(影响因素):清洗、预处理难度大

■算法对围术期高维度数据需要适应(算法创新);

■医学图像和视频数据的影响少(适用于影像学、肿瘤、眼科等);图像的形状、颜色、深度等;

■围术期数据维度:至少数十种(如图像不会受到患者心情、体温等影响);

■往往需要进行降维(Boruta,PCA,t-SNE等)否则计算量太大;

■高维度数据导致应用难,与AI优势应用学科差距显著:AI优势学科包括影像学、肿瘤、眼科、外科决策、慢病、重症医学等,而麻醉学尚无CNS和重要子刊上发表论著。

难题三:麻醉学围术期数据不仅维度高,而且大量噪音混杂在其中

▲围术期用药(干预)记录的及时性和准确性堪忧,明显影响数据质量;

▲占据团队90%的工作量:数据清洗和预处理难度大;

◇指标多且非同量纲(不同指标规格不同,难以比较,需要无量纲化)

◇数据缺失明显(boosting算法占优)

◇信息利用度低下、特征缺失等

▲针对数据算法的AI研究团队不看好麻醉学:高质量数据集难度大。

难题四:麻醉学数据明显影响处理工具及方法的鲁棒性(数据的稳定性和代表性)

▲人工智能技术普遍面临鲁棒性的问题:麻醉学数据的特点使其更加明显;

▲各团队间存在显著的差异:单中心甚至多中心的数据所构建模型难以应用推广;甚至团队内部分干预措施使用/记录发生微小改变亦会导致不同结果;

▲(不同团队的围术期数据:除了地域、人种等区别外,还受到围术期外科医师用药习惯、病人的不同情绪、麻醉医师的管理习惯(积极与保守)等诸多区别;

围术期数据“鲁棒性”的影响

而一家医院建模,另外医院作为外部验证的研究惨不忍睹,其灵敏度、精确率、召回率、AUC等指标差距甚大,数据离散度较大。

解决鲁棒性的最有效方法是多中心的融合数据联盟

多中心数据建模的推广性显著高于单中心;

多中心合作研究核心问题是解决数据壁垒;

多团队的联合攻关:互为研究参与者,从合作方拿走二级数据(而非原始数据,可以有效避免数据壁垒问题)。

可以预计AI的研究很快会代替RCT研究的同时,单中心的AI研究将被淘汰(内卷加深),而多中心/大样本建模、单/多中心验证是未来方向。多中心/大样本的模型外部验证明显好于单中心模型,目前本团队正在进行的一项利用术前指标预测术后呼吸并发症的研究,涉及的三家医院分别进行了单中心外部验证,效果较好,提示模型的“泛化性”良好。

四、在围术期大数据算法应用和研究中,很多团队遇到瓶颈

▲基于围术期大数据的算法概述及分类

☆传统机器学习的算法:k近邻、线性模型、决策树、朴素贝叶斯、逻辑回归、支持向量机以及集成学习等;

☆深度神经网络算法:前馈神经网络、卷积神经网路、递归神经网络等;

▲算法研究:算法创新+算法策略优化

▲围术期大数据算法创新(集成创新)

▲围术期大数据算法策略优化方法

☆梯度下降法(最简单、最常用)

随机梯度下降

小批量梯度下降

提前停止

☆牛顿法和拟牛顿法

☆共轭梯度法

☆启发优化法

在围术期大数据算法应用和研究中,研究团队的持续性/生命力非常重要,研究亚领域往往周期短(数据研究→算法研究),优势学科包括影像学、肿瘤、眼科等基本上都是算法研究等。

1.围术期大数据:预警类的研究

围术期大数据的特点是需要算法研究,算法应用效果较差的时候,可以进行算法研究提升效果,算法集成创新+梯度下降法。通过在线工具协助麻醉管理,可提高命中率。

王天龙教授、马大青教授、王东信教授等众多团队一致认为风险评估喝围术期风险控制可能是治疗术后谵妄的最有效方法,在这里我们介绍我们团队依据多中心数据集构建的老年PND发生的预警模型及其在线工具:

■老年患者术后PND发生的预警明显的构建和初步验证研究

■多中心:共纳入49768例全麻患者,在排除pre-existingNCD后,最终纳入1051例数据(阳性242例,阴性809例)进行分析

■经过在线工具设计,可用于围术期术前及术中的动态评估

2.围术期大数据预警类研究的瓶颈

目前基本上都是预警类研究,高质量数据集支撑下单用深度学习可以有效预测围术期各种危重症的发生,然而技术逐渐被掌握,基于深度学习的预警类研究越来越内卷:一投就中,一投就拒。

增加投稿命中率有如下建议:

研究目的的思路和内容的一致性;

模型的应用价值;

数据质量、代表性、样本量;

预测建模方法了解度;

推广应用性(解决鲁棒性)

3.围术期大数据基础上的强化学习有望实现麻醉管理医疗决策支持

现状:做正确的医疗决策难,围术期麻醉管理中动态,持续做正确决策更难。

ERAS措施太多,有过度嫌疑:明显加重医护工作量、浪费资源;

ERAS与个体化:不同的手术可能需要不同的措施;

均是单个措施的研究,多措施复合可能有不同的结果;

各措施之间,可能存在明显相互影响;

一些RCT研究证明无效简单措施,可能在多措施中扮演重要角色。

4.强化学习

强化学习常用贝叶斯网络(Bayesiannetworks,BNs)和马尔可夫决策过程(MDP)建模和解决,其中BNs主要用于处理简单低维的问题如病人情况良好的简单手术类型,而MDP的高维复杂数据有先天优势,可用于复杂手术类型和危重患者。

五、在围术期管理医疗决策中的应用前景

1.应用一:可以实现全部参数实时动态的闭环,为麻醉用药机器人提供前期基础:目前的闭环BIS+TCI麻醉管理过于粗,现成的成熟技术、临床病例数据噪音过大。

2.应用二:开辟ERAS研究新领域

3.应用三:重症患者围术期的围术期管理

这是目前的攻关重点,借鉴ICU和慢病领域,其他应用包括多模式镇痛的个体化组合推荐研究等。斯坦福大学管理科学与工程系和医学健康研究与政策学系基于个体患者的特征建立了MDP,以患者利益最大化和风险最小化寻找优化策略实现个性化的高血压治疗。

7个状态:4种药物分别是血管紧张素转换酶(ACE)抑制剂、血管紧张素受体阻滞剂(ARB)、beta-阻滞剂、钙通道阻滞剂(CCB)和噻嗪类利尿剂JNC8.EighthJointNationalCommittee(可以看成指南推荐)

我们团队关于术后脓毒症患者预防性使用肝素的最优方案研究

研究结论是对于术后脓毒症患者,采用1.38-1.88ug/kg/h的肝素,可有效降低SOFA评分,利于患者的康复。该研究方法可以在复杂的不同病例、不同时段变化的治疗方案以及病情复杂变化中,有效找出最优化的个体化方案,常规RCT研究无法完成,因此具备较佳应用前景。

六、总结

围术期大数据势必推动麻醉学管理的进步;

麻醉多目标优化是必然趋势:借助算法可以完成RCT无法应用的研究,建议尽早介入(仍然需要有科学问题);

随着研究的深入,围术期大数据驱动下的麻醉管理研究势必会发现既往无法发现的内容,从而给手术患者带来更大更多的益处;

特有规律和流程:建议找成熟团队帮带研究;

围术期大数据研究越来越多,内卷严重,严谨的设计+多中心研究;

研究的难点在于高质量数据集:要么来自于知名数据库,要么提供足够的佐证证明数据的质量(投稿的关键)。

专家简介

主任医师、博士研究生导师

陆军军医大学第一附属医院(重庆西南医院)麻醉科主任

中华医学会麻醉学分会委员、全军麻醉青年委员会副主任委员、重庆市医学会麻醉学分会副主任委员,重庆市医师会麻醉学分会常委。

重庆英才·创新领军人才,陆军科技英才、重庆医师协会“优秀麻醉医师奖”、陆军军医大学优秀研究生导师

主持国家自然科学基金项目5项、主持国家重点研发计划、国家科技支撑计划分课题各1项、主持重庆市教改重点课题1项以及中国学位与研究生教育委员会等教学课题4项。重庆市课题4项。

第一/通讯作者发表SCI40篇(TOP6篇,最高分17.649)。

参加了“北京小汤山抗击非典”、“汶川抗震救灾”、“2020年武汉抗疫”“2022年上海抗疫”等

本公众平台所刊载原创或转载内容不代表米勒之声的观点或立场。文中所涉及药物使用、疾病诊疗等内容仅供医学专业人士参考。

—END—

编辑:MiLu.米鹭

校对:Michel.米萱

医学审核:何思梦博士

不感兴趣

看过了

取消

人点赞

人收藏

打赏

我有话说

0/500

同步到新浪微博

您的申请提交成功

您已认证成功,可享专属会员优惠,买1年送3个月!开通会员,资料、课程、直播、报告等海量内容免费看!

THE END
1.大数据机器学习算法概论腾讯云开发者社区大数据 机器学习 算法概论 ?算法概述? 算法是计算机科学领域最重要的基石之一,计算机语言和开发平台日新月异,但万变不离其宗的是那些算法和理论,数据结构和算法是软件开发必备的核心基础,是内功心法。下面举例拿推荐算法和分类算法的实际场景做下举例:https://cloud.tencent.com/developer/article/2479107
2.大数据算法一文掌握大数据算法之:概述特点类型及难点等,值得2.1 什么是大数据算法 2.2 大数据算法特点 2.3 大数据算法类型 2.4 大数据算法难点 3、总结 1、引言 小屌丝:鱼哥,大数据开篇反馈不错哦。 小鱼:嗯,是的呢, 咱这个专栏,同样也是跟大家详细介绍大数据算法的知识。 小屌丝:那鱼哥,还是老样子,理论+实例相结合吗? https://blog.csdn.net/wuyoudeyuer/article/details/141284911
3.java大数据算法java大数据是什么意思jacksky的技术博客java 大数据 算法 java大数据是什么意思 一、 大数据 背景:随着科技的发展,智能手机、智能穿戴设备越来越普及,数据量越来越庞大,大数据应运而生。 1M=1024KB 1G=1024M 1T=1024G 1P=1024TB… 大数据:大(海量)+数据(论文、视频、游戏战绩、购买记录等等)https://blog.51cto.com/u_14125/6788081
4.大数据要学算法吗?大数据算法怎么学?开发技术发展越来越成熟,学习大数据开发的小伙伴也越来越多,同时,在这些小伙伴中有大部分的人会选择参加大数据培训的方式来学习因为大数据开发技术所包含的编程技术知识比较复杂,只有选择一个比较适合自己的学习方式,才能更快地的入门学习,掌握大数据的开发技术基础知识,然而,算法的学习是比较头疼的一件事,那大数据算法https://m.edu.iask.sina.com.cn/jy/gfOUVBWajX.html
5.算法是指什么?算法概述二、传统算法与大数据算法 传统的数据算法可被称为数据分析,数据分析的目的在于对已有的数据进行描述性分析,其重点在于发现数据隐含的规律,进行商业分析和处理。 大数据时代的数据算法可被称为数据科学,与数据挖掘和机器学习相关。 机器学习是交叉学科,机器学习涉及的学科包括概率论、统计学、逼近论、图分析、算法复杂度https://m.elecfans.com/article/2008707.html
6.大数据常用的算法大数据常用的算法 引言概述: 随着大数据时代的到来,大数据算法变得越来越重要。大数据算法是指在处理海量数据时,能够高效地提取有用信息的一种数学模型和方法。本文将介绍几种常用的大数据算法,并详细阐述它们的原理和应用。 正文内容: 一、聚类算法 1.1 K-means算法:通过计算数据点之间的距离,将数据点划分为不同的簇https://wenku.baidu.com/view/fc343a77adf8941ea76e58fafab069dc50224791.html
7.大数据分析是什么通过大数据分析算法,应该对于数据进行一定的推断,这样的数据才更有指导性。 在大数据时代,大数据分析价值不可估量。在防伪行业中,大数据分析可为企业实现更优质的服务;在企业中,大数据分析为企业决策者以及监管部门提供决策参考,也可帮助企业更准确找到自身定位和发展方向。https://www.linkflowtech.com/news/2090
8.我去算了一卦。最后的结论,让自己大吃一惊我在百度搜索的时候,发现往往各个流派对关键变量的解释往往大有不同。这也可以理解。每个大数据系统的变化也会因为输入数据不同而相差甚远,淘宝的推荐系统,必然跟京东的,亚马逊的完全不同。例如现在流行的大数据算法体系:人工智能,经过算法训练的准确性,跟输入数据的数量和质量也是息息相关的。 https://www.jianshu.com/p/72dbf8527107
9.什么是大数据数据挖掘6帆软数字化转型知识库什么是大数据 数据挖掘6 大数据和数据挖掘是两者之间既有联系又有区别的概念。大数据指的是体量巨大、结构复杂且增长速度快的数据集合,通常用来描述企业和组织所面临的数据挑战。数据挖掘则是从大数据中提取有价值的信息和知识的过程,通过应用各种算法和技术发现隐藏的模式和关系。大数据强调的是数据的规模和多样性、数据https://www.fanruan.com/blog/article/602195/
10.算法工程师软件工程师大数据工程师,傻傻分不清楚这个类别中的大数据算法,其实我们基本上可以理解算法工程师。 这是唯一跟算法工程师有交叉的部分 系统类 偏向于系统开发,比如我们经常听到的hadoop、云计算,就是属于这个类型。这里其实主要是hadoop(一个分布式系统,简单理解为另外一种和Windows或者是MacOS一样的东西)偏多,开发语言一般是Java。而另外数据管理员(DBA)和https://maimai.cn/article/detail?fid=845613115&efid=fwunO1cSXu6ZrJpdACNWjA
11.不懂这25个名词,好意思说你懂大数据?01 算法(Algorithm) 算法可以理解成一种数学公式或用于进行数据分析的统计学过程。那么,「算法」又是何以与大数据扯上关系的呢?要知道,尽管算法这个词是一个统称,但是在这个流行大数据分析的时代,算法也经常被提及且变得越发流行。 02 分析(Analyticsanalyze) https://gxq.guiyang.gov.cn/zjgxq/zjgxqxyzs/zjgxqxyzsdsjqy/201710/t20171013_17120534.html
12.焦点分析把大数据和算法关进笼子里从伦敦到旧金山,从布鲁塞尔到北京,大数据和算法要像权力一样被关进笼子里——这已是这个时代前所未有的全球新命题。 法律赋予用户拒绝算法的权利 那么,中国的《个人信息保护法》生效后,到底会产生什么影响呢? 前两天有一起信息泄露事件被炒得很火。据浙江省通信管理局文件,2019年双十一阿里云未经用户同意擅自将用户注https://36kr.com/p/1366804411008390
13.《大数据时代》的读后感范文大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。 在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何https://www.unjs.com/dhg/3133302.html
14.大数据日知录(豆瓣)大数据是当前最为流行的热点概念之一,其已由技术名词衍生到对很多行业产生颠覆性影响的社会现象,作为最明确的技术发展趋势之一,基于大数据的各种新型产品必将会对每个人的日常生活产生日益重要的影响。 《大数据日知录:架构与算法》从架构与算法角度全面梳理了大数据存储与处理的相关技术。大数据技术具有涉及的知识点异常众多https://book.douban.com/subject/25984046/
15.你知道“算法”吗你知道“算法”吗网络时代,大数据至热。当你在网网络时代,大数据至热。当你在网上购物时,系统会根据你的喜好推荐商品,当你在刷抖音时,平台会不断推送你喜欢的视频,这正是现代网络的一大特征:“投你所好,定向投喂”,而这一切皆源于一项技术――“算法”。 “算法”一词源于波斯数学家花拉子密,公元9世纪,他在书中讨论如何用纸笔解决数学问题的技巧。比如:求https://xueqiu.com/1937519565/234818687
16.多拉快跑更安全?看G7智能挂的神级操作1、大数据算法,智能配货 拉货永远遵循一个原则,那就是多拉快跑,这句话用在快递快运领域尤其适合。 大家都知道,在快递快运领域多用的是厢式车。那么,如何在国家法律法规的允许下获得更大容积的厢式车,在同样容积的箱体里摆放更多的货物则成为现代运输人亟待解决的问题。 http://www.360che.com/news/190228/106757.html
17.大数据“杀熟”套路太深!多位法学专家建言破解之道南方plus作为一个普通消费者,可能很多次都遇到过这样的情况,互联网平台利用大数据的算法分析,进行“杀熟”。 10月23日,北京理工大学法学院主办的“第五届全国智能科技法治论坛”举办,南开大学法学院教授许光耀在会上指出,“所谓大数据杀熟是指互联网商家利用大数据技术,通过算法分析处理收集到的用户信息并做出数据画像,对每个用户https://static.nfapp.southcn.com/content/202110/27/c5875937.html
18.《新闻知识》用户传播行为带来了多少虚假降信息?(三)借助大数据算法,提高真实健康信息传播率和个性化推送 现代互联网技术的发展使得信息推送更加个性化,利用算法,可以在各大平台中给信息可信度分级,再将可信度较高的真实健康信息推荐给相应健康信息需求者,会极大提高真实健康信息的传播范围,抑制虚假健康信息的扩散。 https://www.hubpd.com/hubpd/rss/zaker/index.html?contentId=2882303761519408435
19.互联网江湖二十年:本质赛道和演化逻辑2)数字化产生的“生产资料”:2C+2B+2C背后三张网数字化所产生的大数据资源。 3)硬软件系统构成“生产力”:算力(芯片)+算法(操作系统)+网络构成基础设施。 4)能支配万物的“万有引力”:网络效应是支配三张网的主导力量,是整个竞争的底层逻辑。 风险提示:网络效应下的各个巨头的天然极强垄断毁灭创新,被AI算法https://www.huxiu.com/article/284279.html
20.科学网—[转载]武新:大数据架构及行业大数据应用而招标书中对数据挖掘的需求更是关系型数据很难解决的:“大数据平台具备非结构化数据处理能力(文本分词),支持多维社交网络分析、路径分析等大数据深度分析功能,支持经典数据挖掘算法,包括:逻辑回归、聚类、决策树。”从上面标书内容可以看出,无论是对数据处理平台的技术,还是业务需求都跟上一代数据分析平台有了巨大的差https://blog.sciencenet.cn/blog-887780-1358813.html