“大数据”核心知识精粹!

大数据就是指规模巨大、复杂多样的数据集合,无法用传统的数据处理工具进行捕捉、管理、处理和分析的数据。简而言之,就是规模巨大、类型繁多、处理速度要求高的数据集合,它不仅仅是大,更显著的作用是在于其背后的价值挖掘与智能决策能力,是需要运用新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

一、大数据的定义

广义定义:指物理世界到数字世界的映射和提炼,通过发现其中的数据特征,激活数据价值,从而做出提升效率的决策行为。

狭义定义:指通过对数据的获取、存储、分析,从大容量数据中挖掘价值的一种全新的技术架构。

二、大数据的特点

Volume(大量):数据规模庞大,以PB、EB甚至ZB为单位。

Velocity(高速):数据产生和处理的速度非常快,要求实时分析。

Variety(多样):数据类型繁多,包括结构化、半结构化和非结构化数据。

Value(价值):虽然数据量大,但真正有价值的信息需要深度挖掘。

Veracity(真实性):数据的准确性和可靠性是数据分析的前提。

三、大数据的类型

结构化数据:以关系型数据库表形式管理的数据,例如企业ERP、OA、HR里的数据。

非结构化数据:数据结构不完整或者不规则,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据,例如Word、PDF、PPT及各种格式的图片、视频等。

半结构化数据:非关系模型的、有基本固定结构模式的数据,例如日志文件、XML文档、JSON文档、E-mail等。

四、大数据的关键技术

数据采集与存储:通过ETL(Extract,Transform,Load)等技术,从各种源头收集数据,并利用分布式存储系统(如HadoopHDFS)进行高效存储。

数据治理与分析:利用MapReduce、Spark等分布式计算框架,对数据进行清洗、转换和聚合,再通过机器学习、数据挖掘等技术挖掘数据背后的价值。

数据可视化:通过图表、仪表盘等工具,将复杂的数据分析结果以直观的方式展现出来,帮助非技术人员理解数据。

数据管理:指应用数据库管理、数据仓库等信息系统技术和其他数据管理工具,完成组织数据资源管理任务。

数据安全与隐私保护:在享受大数据带来便利的同时,必须重视数据的安全与隐私保护,采用加密、脱敏等技术手段确保数据安全。

五、大数据的应用场景

在产业经济领域:大数据被用于产业监测、产业规划、政策制定、资源调度等方面。

在商业市场领域:大数据被用于市场营销、客户关系管理、风险监控、供应链管理等方面。

在医疗健康领域:大数据被用于疾病预测、医疗诊断、药物研发等方面。

在城市规划领域:大数据被用于交通管理、资源配置、环境监测、公共安全等方面。

在科学研究领域:大数据被用于天文学、生物学、物理学等各个学科。

六、大数据的价值

趋势预测:通过对沉淀下来的大量的数据分析,可以发现隐藏在数字背后的规律和趋势,以此来预测未来发展的动态和趋势,这在政府管理和企业决策方面至关重要。

决策优化:通过对大数据分析后制定出的经营管理的策略,具有客观性、科学性等特征,为决策者提供依据,改变过去决策的主观臆断和不及时性。

创新经营模式,提升服务体系质量:通过全面的、科学的分析数据,充分了解用户需求及行为习惯,企业实现为用户提供定制化的产品及服务体系,提升用户的满意度。转变企业商业模式,提质增效,提升企业的竞争优势。

七、大数据的发展演进

第一阶段(起步阶段):数据库被发明之后,使得数据管理的复杂度大大降低。各行各业开始产生了数据,从而被记录在数据库中。这个阶段的数据,以结构化数据为主。数据的产生方式,也是被动的。

第三阶段(加速阶段):是万物互联和数字化转型阶段。随着物联网的发展,各种各样的感知层节点(传感器、摄像头等)开始自动产生大量的数据,实现物理世界向数字世界的映射。

八、大数据未来发展趋势

资产化:大数据价值不断提升,在企业和社会层面成为重要的战略资源、无形资产。

智能化:大数据将更加智能化,可以自动进行数据处理和分析,提高数据处理效率和质量。

安全性:大数据将更加注重数据安全,采用更加严格的数据保护措施,确保数据的安全性和隐私性。

THE END
1.数据挖掘概念(AnalysisServices该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: 您在查找什么?您要尝试找到什么类型的关系? 您要尝试解决的问题是否反映了业务策略或流程? 您要通过数据挖掘模型进行预测,还是仅仅查找受关注的模式和关联? https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.大数据挖掘价值洞察研究大数据挖掘价值-洞察研究 下载积分: 1388 内容提示: 大数据挖掘价值 第一部分 大数据挖掘概述 2 第二部分 大数据挖掘技术 4 第三部分 大数据挖掘应用场景 https://www.doc88.com/p-69619764087796.html
3.数据挖掘dm是什么意思帆软数字化转型知识库数据挖掘dm是什么意思 数据挖掘(Data Mining,简称DM)是一种从大量数据中提取有价值信息的技术,它通过模式识别、统计分析、机器学习等方法来发现数据之间的关联和趋势。数据挖掘的核心在于从看似无序的数据中挖掘出有意义的模式和关系。这些信息可以用于商业决策、市场分析、科学研究等多个领域。例如,在商业决策中,通过https://www.fanruan.com/blog/article/598648/
4.深度解析数据挖掘如何进行数据挖掘 数据挖掘听起来可能只有大企业才能做,但只要按照阶段进行,任何公司都可以做到。为此,我们推荐使用CRISP-DM(跨行业数据挖掘标准流程)。CRISP-DM(Cross-Industry Standard Process for Data Mining)是一种跨行业的数据挖掘标准流程。它提供了一套结构化的步骤和方法,帮助数据挖掘项目团队规划、实施https://baijiahao.baidu.com/s?id=1772272932209270558&wfr=spider&for=pc
5.什么是数据挖掘?(DM与DWOLAPCRM的区别)数据挖掘中的dw(DM 与DW 、OLAP、CRM 的区别) 什么是数据挖掘 数据挖掘(Data Mining),又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。https://blog.csdn.net/christmasxu/article/details/52153710
6.什么是DM?()A.数据仓库B.数据挖掘C.数据分析D.数据处理什么是DM?( ) A. 数据仓库 B. 数据挖掘 C. 数据分析 D. 数据处理 点击查看答案 你可能感兴趣的试题 单项选择题铣床加工要手工进料,因此其生产效率和加工质量要比压刨低。( ) A、正确 B、错误 点击查看答案 不定项选择 面膜的防腐首要要求具有安全性,其次要求高效、广谱、扩散性和持久性。 A.正确http://www.ppkao.com/wangke/daan/387b0239197a4b11acf5b41d3b04cb53
7.商战数据挖掘:你需要了解的数据科学与分析思维数据科学的一条重要原则是,数据挖掘的流程可以分解为几个通俗易懂的环节。有些环节涉及信息技术的应用,如数据中模式的自动发现和评估,而有些则主要依赖数据分析师的创意、常识和商业知识。理解数据挖掘的整个过程,有助于组织数据挖掘项目,使它们更接近系统性的分析,而不是凭借运气和个人智慧的冒险行为。 https://www.ituring.com.cn/book/tupubarticle/28952
8.数据挖掘分析平台(DMPlus)挖掘数据价值、寻找数字“金矿“ 概述 数据挖掘分析平台(DMPlus)是什么? 如何从海量数据中找到有价值的数据?什么是有价值的数据? DMPlus提供一个开放的数据挖掘分析平台,极易操作的可视化编辑页面,降低数据挖掘门槛,通过拖拽式流程设计,快速实现各类数据挖掘应用。提供数据计算脚本管理,提供计算任务管理,提供数据计算任务http://www.sudytech.com/_s2/4799/list.psp
9.数据挖掘与数据建模的9大定律(深度长文收藏细读!)虽然CRISP-DM能够指导如何实施数据挖掘,但是它不能解释数据挖掘是什么或者为什么适合这样做。在本文中我将阐述我提出数据挖掘的九种准则或“定律”(其中大多数为实践者所熟知)以及另外其它一些熟知的解释。开始从理论上(不仅仅是描述上)来解释数据挖掘过程。 https://cloud.tencent.com/developer/article/1041773
10.利用DM工具Weka进行数据挖掘(分类)的完整过程利用DM工具Weka进行数据挖掘(分类)的完整过程: (有关Weka的使用详见:ML 与 DM 工具 Weka 的使用) 0 问题背景 任务:根据给定数据集创建分类器。 训练数据集:100 predictive attributes A1,…,A100和一个类标C。每一个属性是介于0-1之间的浮点数https://www.cnblogs.com/shenxiaolin/p/7892611.html
11.数据挖掘技术在客户关系管理中如何应用二、数据挖掘(DM) 数据挖掘(Data Mining,简称DM),简单的讲就是从大量数据中挖掘或抽取出知识。数据挖掘概念的定义描述有若干版本。一个通用的定义是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取人们感兴趣的知识,这些知识是隐讳的、事先未知的、潜在有用的信息。 https://www.wenshubang.com/xingzhengguanlibiyelunwen/151599.html
12.物流服务质量评价模型与方法研究综述(SEM)和多变量统计数据从實证角度分析物流服务质量的影响因素;17.1%的文献使用质量函数开发法(QFD)、情感工程法(AE)和数据挖掘法(DM)等方法将消费者需求转换为企业质量特征,其中模糊层次分析法(FAHP)或层次分析法(AHP)主要用于计算评价指标的权重,占9.21%,只有2篇论文(占2.6%)侧重于数据挖掘或其他收集消费者需求https://www.fx361.com/page/2021/0224/7663320.shtml
13.技术经济分析报告(三)数据挖掘(DM)技术 数据挖掘可以称为数据库中的知识发现,是从大量数据中提取出可信、新颖有效并能被人理解的模式的高级处理过程,是数据库技术、人工智能、神经网路、机器学习等领域的交叉学科。数据挖掘是一个过程,是从大型数据库中抽取隐藏其中的可理解的可操作的信息,目的是帮助分析、决策人员寻找数据之间的关联https://www.ruiwen.com/fenxibaogao/8332890.html
14.dm是什么意思数据挖掘理想股票技术论坛DM在数据挖掘中的含义及相关技术介绍。 ,理想股票技术论坛https://www.55188.com/tag-09806214.html
15.大数据之数仓概念这几天看了一些专业的解释,还是对ODSDW和DMDM:目前网上有两种说法,一说数据集市(Data Mart);一说数据挖掘(Data Mining),百度百科给出的是数据挖掘的概念,我这里将这两种说法都做了解释: DM(Data Mart):数据集市,以某个业务应用为出发点而建立的局部DW,DW只关心自己需要的数据,不会全盘考虑企业整体的数据架构和应用,每个应用有自己的DM。 https://juejin.cn/post/6844904058260570119
16.数据挖掘与分析心得体会数据挖掘应当更正确的命名为:“从数据中挖掘知识”,不过后者显得过长了些。而“挖掘”一词确是生动形象的!人们把数据挖掘视为“数据中的知识发现(KDD)”的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤! 由此而产生数据挖掘的定义:从大量数据中挖掘有趣模式和知识的过程!数据源包括数据库、数https://www.360wenmi.com/f/file46470luq.html
17.数据挖掘技术论文(5篇).docx二、数据挖掘(DM) 数据挖掘(DataMining,简称DM),简洁的讲就是从大量数据中挖掘或抽取出学问。数据挖掘概念的定义描述有若干版本。一个通用的定义是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取人们感爱好的学问,这些学问是隐讳的、事先未知的、潜在有用的信息。 常用的数据挖掘方法有:(1)https://max.book118.com/html/2023/0614/7012161003005122.shtm