大数据入门的四个必备常识互联网数据资讯网199IT中文互联网数据研究资讯中心

大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

要明白分析什么数据,大数据要分析的数据类型主要有四大类:

分析师的专业知识和技能。有些工具的目标受众是新手用户,有的是专业数据分析师,有的则是针对这两种受众设计的。

这3个职业是如何定位的?

1,计算机科学

2,数学、统计、数据挖掘等

除了数学、统计方面的素养之外,还需要具备使用SPSS、SAS等主流统计分析软件的技能。其中,面向统计分析的开源编程语言及其运行环境“R”最近备受瞩目。R的强项不仅在于其包含了丰富的统计分析库,而且具备将结果进行可视化的高品质图表生成功能,并可以通过简单的命令来运行。此外,它还具备称为CRAN(TheComprehensiveRArchiveNetwork)的包扩展机制,通过导入扩展包就可以使用标准状态下所不支持的函数和数据集。

3,数据可视化(Visualization)

信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,开发Web原型,使用外部API将图表、地图、Dashboard等其他服务统一起来,从而使分析结果可视化,这是对于数据科学家来说十分重要的技能之一。

对于大数据工程师的要求都是希望是统计学和数学背景的硕士或博士学历。缺乏理论背景的数据工作者,更容易进入一个技能上的危险区域(DangerZone)—一堆数字,按照不同的数据模型和算法总能捯饬出一些结果来,但如果你不知道那代表什么,就并不是真正有意义的结果,并且那样的结果还容易误导你。只有具备一定的理论知识,才能理解模型、复用模型甚至创新模型,来解决实际问题。

2,计算机编码能力

实际开发能力和大规模的数据处理能力是作为大数据工程师的一些必备要素。因为许多数据的价值来自于挖掘的过程,你必须亲自动手才能发现金子的价值。举例来说,现在人们在社交网络上所产生的许多记录都是非结构化的数据,如何从这些毫无头绪的文字、语音、图像甚至视频中攫取有意义的信息就需要大数据工程师亲自挖掘。即使在某些团队中,大数据工程师的职责以商业分析为主,但也要熟悉计算机处理大数据的方式。

3,对特定应用领域或行业的知识

大数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。所以,在某个或多个垂直行业的经历能为应聘者积累对行业的认知,对于之后成为大数据工程师有很大帮助,因此这也是应聘这个岗位时较有说服力的加分项。

1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。

首先,各个公司对数据科学家的定义各不相同,当前还没有统一的定义。但在一般情况下,一个数据科学家结合了软件工程师与统计学家的技能,并且在他或者她希望工作的领域投入了大量行业知识。

大约90%的数据科学家至少有大学教育经历,甚至到博士以及获得博士学位,当然,他们获得的学位的领域非常广泛。一些招聘者甚至发现人文专业的人们有所需的创造力,他们能教别人一些关键技能。

因此,排除一个数据科学的学位计划(世界各地的著名大学雨后春笋般的出现着),你需要采取什么措施,成为一个数据科学家

THE END
1.数据挖掘概念(AnalysisServicesSQL Server 2008 提供用于创建和使用数据挖掘模型的集成环境,称为 Business Intelligence Development Studio。该环境包括数据挖掘算法和工具,使用这些算法和工具更易于生成用于各种项目的综合解决方案。有关使用 BI Development Studio 的详细信息,请参阅使用 Business Intelligence Development Studio 进行开发和实现。 https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.经典!10大数据挖掘算法!国际权威的学术组织 the IEEE International Conference on Data Mining (ICDM) 早前评选出了数据挖掘领域的十大经典算法: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。…https://zhuanlan.zhihu.com/p/688376648
3.数据挖掘常用算法概述:探索数据背后的秘密简介:RapidMiner是一款易于使用的数据科学平台,提供了图形界面和内置的数据分析工具。 优势:方便用户进行数据挖掘、机器学习和预测建模等任务。支持自定义算法和扩展插件,提供了诸如远程分析处理、创建和验证预测模型、多种数据管理方法、内置模板、可重复的工作流程、数据过滤以及合并与联接等多项实用功能。 https://blog.csdn.net/2401_84615737/article/details/143439857
4.数据挖掘算法有哪几种数据挖掘算法主要包括以下几种类型: 分类算法:用于将数据项分配到预定义的类别中。常见的分类算法有决策树、支持向量机(SVM)、朴素贝叶斯、k-近邻(k-NN)和神经网络等。这些算法通过学习现有数据集的特征,构建模型来预测新数据的类别。分类算法在解决诸如垃圾邮件检测、疾病诊断等问题中具有广泛应用。 聚类算法:用于将https://agents.baidu.com/content/question/4eb04fd16138bbb18d199dbd
5.数据挖掘算法数据挖掘算法概述 数据挖掘 数据挖掘(Data Mining, DM)是从大量的、不完全的、有噪声的、模糊的、实际应用数据中提取隐藏在其中但具有潜在价值的信息和知识的过程。分析历史数据,发现规律,建立决策模型,根据过去行动预测未来的行为。 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令。算法代表着用系统https://www.jianshu.com/p/1decfa3acec0
6.数据挖掘的算法有哪些种类帆软数字化转型知识库数据挖掘的算法有很多种类,主要包括分类算法、聚类算法、关联规则挖掘、回归分析、降维算法、序列模式挖掘、时间序列分析、异常检测算法、神经网络、支持向量机、决策树、贝叶斯分类器等。分类算法是数据挖掘中最常用的一类算法,通过学习已有数据来预测新数据的类别。决策树是一种常见的分类算法,其通过构建树形模型,将数据https://www.fanruan.com/blog/article/596640/
7.算法工程师和数据挖掘工程师有什么区别吗算法工程师和数据挖掘工程师有什么区别吗 主要问题点在于: 1、求职面试侧重点; 2、以后发展前景 请大家讨论一下~~~ #数据挖掘##算法工程师# 全部评论 推荐 最新 楼层 已注销 数据挖掘工程师和算法工程师都需要一定的数学基础,前者侧重数据挖掘算法,比如层次聚类等等。算法工程师就根据算法领域各有不同了https://m.nowcoder.com/discuss/196851?type=0&order=0&page=1
8.什么是数据挖掘?SAS有监督学习模型以及相关的学习算法。 规范性建模:随着来自网络、评论字段、书籍、电子邮件、PDF 文件、音频和其他文本源的非结构化数据的增长,作为数据挖掘相关学科的文本挖掘也越来越多地为人所采用。您需要能够成功解析、过滤和转换非结构化数据,以便将其包含在预测模型中,以提高预测准确性。 https://www.sas.com/zh_cn/insights/analytics/data-mining.html
9.什么是数据挖掘数据挖掘介绍?IBM流程挖掘位于业务流程管理 (BPM)和数据挖掘的交叉点上。流程挖掘提供了一种将算法应用于事件日志数据的方法,用以确定有关流程如何展开的趋势、模式和详细信息。流程挖掘应用数据科学来发现瓶颈,然后验证和改进工作流程。 BPM 通常通过研讨会和访谈等非正式的方式收集数据,然后使用软件将该工作流程记录为流程图。由于为这https://www.ibm.com/cn-zh/topics/data-mining
10.数据挖掘原理与算法挖掘数据算法粗糙集原理数据库 数据挖掘信息管理与工程学院《数据挖掘原理与算法》毛国君,段立娟,王实,石云清华大学出版社,2007本课程的一些约定:1、课程目的:拓宽与加深专业知识2、注重平时学习?作业按时完成?未按时为晚交?一周内未交视为放弃作业按规定要求完成教科书:不可或缺不允许抄袭?但鼓励讨论?3、https://www.docin.com/p-2580655047.html
11.科学网—数据挖掘(Datamining)简介2、数据挖掘能做些什么?[3] 数据挖掘所要完成的任务其实也非常简单,如果一个人有无限的精力,并且不考虑效率的话,仅靠双手也能完成这些工作。只不过,我们往往面临海量的数据,而又必须在短时间内,以较高的准确度完成数据分析工作,这就必须依赖计算机和有效的算法(即数据挖掘算法)。具体来说,数据挖掘(算法)主要完成https://blog.sciencenet.cn/blog-200199-750526.html
12.数据挖掘原理与算法PDF扫描版[10MB]电子书下载第9章介绍了开放的数据挖掘平台。 数据挖掘原理与算法的使用对象是在校高年级的本科生、研究生及各个领域的高级软件开发人员。 数据挖掘原理与算法 目录: 前言 第1章 导论 1.1 数据挖掘的社会需求 1.2 什么是数据挖掘 1.3 数据挖掘的数据来源 1.4 数据挖掘的分类 1.4.1 分类分析(classification analysis) https://www.jb51.net/php/332629
13.数据挖掘十大算法K均值聚类算法51CTO博客数据挖掘十大算法--K-均值聚类算法 一、相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度。用通俗的话说。相异度就是两个东西区别有多大。比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。https://blog.51cto.com/u_15127603/4737902
14.数据挖掘的常见算法有哪些?数据挖掘是一种通过从大量数据中提取知识和信息的方法,以支持业务决策、市场分析和科学研究等领域。在数据挖掘过程中,算法是最重要的组成部分之一。以下是常见的数据挖掘算法。 1.分类算法 分类算法是一类用于将数据样本分为不同类别的算法。这些算法通常使用监督学习方法,其中模型基于已标记的训练数据进行训练。几个常见https://www.cda.cn/bigdata/202782.html
15.数据挖掘的四种基本方法关联规则挖掘是一种发现数据集中的项之间的关系和规律的技术。通常用于购物篮分析和物品关联推荐。关联规则挖掘算法可以发现数据集中的频繁项集和关联规则,这些规则可以用于推荐系统、市场分析、异常检测等领域。常见的关联规则挖掘算法包括Apriori算法、FP-Growth算法等。 https://www.ai-indeed.com/encyclopedia/4180.html
16.数据挖掘的四种基本方法粗集法基础理论是一种科学研究不精准、不确定性专业知识的数学工具。粗集办法几个优势:不必得出附加信息;简单化键入信息的表述室内空间;优化算法简易,便于实际操作。粗集处理的方针是附近二维关系表的信息表。 数据挖掘的步骤 解读需求要考虑专家、工作人员的意见;数据可从业务层的数据库中提取、抽样;在计算机分析技术https://www.dongao.com/cma/zy/202406204447292.html
17.湖南省统计局技术篇:算法与模型 ? 一、 机关可曾“算”尽? ? 之所以说数据挖掘是高等数学和计算机科学联姻的产物,其中一大原因就在于,对各种算法的支持程度是衡量数据挖掘工具的一大标准。在前期采访中,笔者曾设想通过对比各种数据挖掘工具对算法的支持程度来分出高低。但在采访之后,笔者发现这一对比实无必要,因为目前的算http://tjj.hunan.gov.cn/hntj/bsfw/tjkp/tjsh/201507/t20150717_3825196.html
18.BI系统是什么BI系统的定义详细介绍挖掘算法自然而然用R啊,多强大多专业,不过呵呵,有一定的上手难度,还需要动背后的统计原理,自己设计模型。一直期待有傻瓜式的数据挖掘工具,只要了解比如“聚类”,点一下就给自动的分割数据分好类。FineBI里面目前了解到有五类自动化的挖掘算法:时间序列、聚类、分类、回归和关联规则。 https://www.bnocode.com/article/xtbk60.html
19.《数据挖掘》实验项目《数据挖掘》 一、实验目标 《数据挖掘》课程是一门专业主干课,本课程实验的主要目的是使学生通过实验加深对数据挖掘流程和数据挖掘算法原理的理解,以提高学生的学习兴趣和实践动手能力。 二、实验对象 本实验开设对象为19大数据本科专业学生,本课程为必修课程。http://jsjfz.nut.edu.cn/index.php/cms/item-view-id-1331.shtml