数据挖掘工具有哪些?Worktile社区

数据挖掘工具有:1.Smartbi(思迈特软);2.Hadoop;3.Storm;4.RapidMiner;5.IBMSPSSModeler;6.OracleDataMining;7.Teradata;8.Rattle;9.KNIME;10.Python;11.Orange;12.SASDataMining。

Smartbi(思迈特软)通过深度数据建模,为企业提供预测能力,支持多种高效实用的机器学习算法,包含了分类、回归、聚类、预测、关联,5大类机器学习的成熟算法。其中包含了多种可训练的模型:逻辑回归、决策树、随机森林、朴素贝叶斯、支持向量机、线性回归、K均值、DBSCAN、高斯混合模型。除提供主要算法和建模功能外,SmartbiMining数据挖掘平台还提供了必不可少的数据预处理功能,包括字段拆分、行过滤与映射、列选择、随机采样、过滤空值、合并列、合并行、JOIN、行选择、去除重复值、排序、增加序列号、增加计算字段等。内置5大类机器学习成熟算法,支持文本分析处理,支持使用Python扩展挖掘算法,支持使用SQL扩展数据处理能力。

Hadoop是一个可以分布式处理大量数据的软件框架,以可靠、高效、可伸缩的方式处理。Hadoop并行工作,通过并行处理加快处理速度;Hadoop可以处理PB级数据,用户可以在Hadoop上轻松开发和运行处理海量数据的应用。Hadoop按位存储和处理数据的能力值得信赖;Hadoop可以在节点之间动态移动数据,保证每个节点的动态平衡,因此处理速度非常快;Hadoop可以自动保存多个数据副本,并自动重新分配失败的任务。

从日益增多的数据中挖掘有价值的数据,帮助企业找到发展方向,通过有价值的数据支持帮助企业名列前茅做出决策,而数据挖掘是通过算法从大量数据中搜索隐藏在数据中的有价值数据的过程。

RapidMiner,原名YALE又一个学习环境,是一个用于机器学习和数据挖掘实验的环境,用于研究和实际的数据挖掘任务。毫无疑问,这是世界名列前茅的数据挖掘开源系统。该工具以Java编程语言编写,通过基于模板的框架提供高级分析。

它使得实验可以由大量的可任意嵌套的操作符组成,这些操作符在XML文件中是详细的,并且是由快速的Miner的图形用户界面完成的。较好的是用户不需要编写代码。它已经有许多模板和其他工具,让我们可以轻松地分析数据。

IBMSPSSModeler工具工作台非常适合处理文本分析等大型项目,其可视化界面非常有价值。它允许您在不编程的情况下生成各种数据挖掘算法。它也可以用于异常检测、贝叶斯网络、CARMA、Cox回归以及使用多层感知器进行反向传播学习的基本神经网络。

作为“高级分析数据库”选项的一部分,Oracle数据挖掘功能允许其用户发现洞察力,进行预测并利用其Oracle数据。您可以构建模型来发现客户行为目标客户和开发概要文件。

OracleDataMinerGUI使数据分析师、业务分析师和数据科学家能够使用相当优雅的拖放解决方案处理数据库内的数据。它还可以为整个企业的自动化、调度和部署创建SQL和PL/SQL脚本。

Teradata分析平台提供了优异功能和名列前茅引擎,让用户能够针对不同类型的数据,可以大规模利用他们选择的工具和语言。这是通过以下几步来实现的:让分析工具贴近数据,无需移动数据,并允许用户以更高的速度和准确度对更庞大的数据集运行分析。

Rattle是一个用于数据挖掘的R的图形交互界面(GUI),可用于快捷的处理常见的数据挖掘问题。

Rattle可以提供数据的统计和可视化汇总,将数据转换为可以轻松建模的表单,从数据中构建无监督模型和监督模型,以图形方式呈现模型的性能,并对新数据集进行评分。它是一个使用Gnome图形界面在统计语言R编写的免费的开源数据挖掘工具包,运行在GNU/Linux,MacintoshOSX和MS/Windows下。

Rattle易学易用,不要求很多的R语言基础,被广泛的应用于数据挖掘实践和教学之中,在澳大利亚,有至少15个政府部门采用Rattle作为标准的数据挖掘工具

Konstanz信息采集器是一个用户友好、可理解、全面的开源数据集成、处理、分析和探索平台,可以迅速在其中部署、扩展和熟悉数据。它有一个图形用户界面,帮助用户方便地连接节点进行数据处理。KNIME还通过模块化的数据流水线概念集成了机器学习和数据挖掘的各种组件,并引起了商业智能和财务数据分析的注意。

作为一种免费且开放源代码的语言,Python通常与R进行比较,以方便使用。与R不同的是,Python的学习曲线往往很短,因此成了传奇。许多用户发现,他们可以开始构建数据集,并在几分钟内完成极其复杂的亲和力分析。只要您熟悉变量、数据类型、函数、条件和循环等基本编程概念,最常见的业务用例数据可视化就很简单。

Orange是一个开源数据可视化、机器学习和数据挖掘工具包。它有一个可视化编程前端,可用于探索性数据分析和交互式数据可视化。Orange是一个基于组件的可视化编程软件包,用于数据可视化、机器学习、数据挖掘和数据分析。Orange组件称为窗口组件,范围广泛:从简单的数据可视化、子集选择和预处理,到学习算法和预测建模的评估,不一而足。Orange的可视化编程通过界面来进行,其中工作流程通过连接预定义或用户设计的窗口组件来创建,而高级用户可以将Orange用作Python库,以便操纵数据和更改窗口组件。

使用SASDataMining商业软件发现数据集模式。其描述性和预测性建模提供了更好的理解数据的见解。他们提供了一个易于使用的GUI。他们拥有自动化的数据处理工具,集群到最终可以找到正确决策的优异结果。作为一个商业软件,它还包括可升级处理、自动化、强化算法、建模、数据可视化和勘探等先进工具。

延伸阅读

数据挖掘(DataMining,DM)又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的,先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能,机器学习,模式识别,统计学,数据库,可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。

2.规律寻找:是用某种方法将数据集所含的规律找出来;

3.规律表示:是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。

数据挖掘能够解决的一些常见问题如下:

1.分类问题

2.聚类问题

聚类与分类不同,聚类的类别预先是不清楚的。聚类就是要去发现这些类别,适合一些不确定的类别场景。

3.回归问题

简单来说,回归问题可以看作解线性方程,最大的特点就是生成的结果是连续的,而分类和聚类的结果是分散的。通过使用回归的方法构建一个模型拟合已知的数据,然后测量因变量的结果。

THE END
1.数据挖掘概念(AnalysisServices有关如何将 SQL Server 工具应用于业务方案的示例,请参阅数据挖掘基础教程。 定义问题 与以下关系图的突出显示相同,数据挖掘过程的第一步就是明确定义业务问题,并考虑解答该问题的方法。 该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.数据挖掘概念流程算法与工具全解析数据挖掘工具简介数据挖掘工具是数据挖掘过程中的重要辅助手段,它们提供了丰富的数据挖掘算法和可视化功能,使得数据挖掘过程更加高效和直观。以下是一些常用的数据挖掘工具: Python:一种流行的编程语言,有丰富的数据挖掘库和工具包,如NumPy、Pandas、Scikit-learn、TensorFlow等,提供了强大的数据处理和分析能力。 https://blog.csdn.net/Echo_3wdiankang/article/details/143492282
3.智能数据挖掘:开启现代信息时代的智慧之门算法聚类数据仓库现随着物联网和大数据技术的发展,实时数据挖掘将成为趋势。企业将能够实时分析数据,快速做出决策,从而提高竞争力。 3. 自动化数据挖掘 3. Automated Data Mining 自动化数据挖掘工具的出现,将降低数据分析的门槛,使得更多的企业能够利用数据挖掘技术。通过自动化,数据挖掘的效率和准确性将大幅提高。 https://www.163.com/dy/article/JEQ1N6SJ0512BOIV.html
4.数据挖掘用哪些工具做帆软数字化转型知识库数据挖掘可以使用R、Python、RapidMiner、KNIME、Weka、SAS、SQL、Hadoop、Tableau、SPSS等工具。其中,Python是最受欢迎的工具之一,因为其强大的库和社区支持使得数据挖掘过程更加高效。Python 拥有丰富的第三方库,如 pandas、NumPy、scikit-learn 和 TensorFlow,这些库提供了从数据预处理到复杂模型构建的全方位支持。Pythonhttps://www.fanruan.com/blog/article/576876/
5.数据挖掘一般用什么工具?数据挖掘工具的选择应考虑到数据量、任务类型、技能水平和预算等因素。开源工具如Python和R提供了广泛的功能和灵活性,适用于从数据清洗到建模的全过程。商业工具如FineBI提供了强大的可视化和报告功能,适用于业务用户和数据分析师。对于大规模数据集和分布式计算,Apache Hadoop和Spark是不可或缺的选择。选择合适的工具可https://www.finebi.com/da/sjwjgj
6.一文读懂数据挖掘建模预测那么,对于普通人来说还有没有什么办法不学这些晦涩难懂的知识也能做数据挖掘呢? 答案是,有的。那就是利用工具,自动数据挖掘工具。自动数据挖掘工具将建模所需要知识和流程整合起来,这样就可以利用前人的知识自动建模和预测了。借助自动建模工具,我们只需要完成业务理解,数据准备过程,剩下的难度较大,并且需要反复迭代https://c.raqsoft.com.cn/article/1646026122841
7.写论文数据分析工具是什么写论文数据分析工具是什么 问:数据分析的常见工具有哪些? 答:1、数据处理工具:Excel ,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联https://www.igaichong.com/article/900fae15db93d6a5682e4aa2.html
8.什么是数据挖掘和KDD·MachineLearningMastery博客文章翻译您了解到机器学习是数据挖掘中使用的工具,数据挖掘实际上是数据库或KDD中知识发现过程中的一个步骤,并且它已经成为术语的同义词,因为它更容易说。 您了解到,当您从事机器学习项目时,您可能正在执行某种形式的KDD流程,其具体目标是解决问题而不是进行发现。 https://www.kancloud.cn/apachecn/ml-mastery-zh/1951996
9.BI系统是什么BI系统的定义详细介绍挖掘算法自然而然用R啊,多强大多专业,不过呵呵,有一定的上手难度,还需要动背后的统计原理,自己设计模型。一直期待有傻瓜式的数据挖掘工具,只要了解比如“聚类”,点一下就给自动的分割数据分好类。FineBI里面目前了解到有五类自动化的挖掘算法:时间序列、聚类、分类、回归和关联规则。 https://www.bnocode.com/article/xtbk60.html
10.湖南省统计局算法和建模作为数据挖掘工具的核心技术从它诞生之日起就在得到不断完善,而在最近两年,也有一些新的技术和应用热点开始引起人们的关注,比如文本挖掘、网络挖掘和可视化挖掘就是其中比较重要的三种。 “文本挖掘是个太恐怖的事情。”中国传媒大学调查统计研究所副所长、数据挖掘研究室主任沈浩如此形容文本挖掘的威力。文本http://tjj.hunan.gov.cn/hntj/bsfw/tjkp/tjsh/201507/t20150717_3825196.html
11.50个BA分析工具第二十一个DataMining(数据挖掘)知识卡片 工具名称:Data Mining(数据挖掘) 工具介绍:Data Mining最早是用在数据仓库中,而现在已经不局限于数据仓库了通过发现有用的模式和数据来提升我们的决策水平在过去的模式中,会把传统的数据库的数据通过etl或者elt汇总到数据仓库数据仓库的模型和数据库的模型是https://maimai.cn/article/detail?fid=1478662341&efid=JLgH4dfGCstru6TzScYN1A
12.大数据智能计算与数据挖掘技术大数据挖掘算法与应用7.常用的数据挖掘工具 1.机器学习PAI: 2. SAS 3.Stata 4.Python 5.IBM SPSS Modeler 6.Wake 7.R语言 8.MATLAB 8.特征工程 1.特征工程定义: 2.特征工程的作用: 9.数据挖掘的演变 10.举例说明你身边的数据挖掘应用实例 1.数据挖掘的定义 学术界对数据挖掘的定义为:通过相关算法从大量的数据中搜索隐藏于https://blog.51cto.com/u_14230/7943483
13.12款最好用的数据挖掘工具免费的数据挖掘工具包括从完整的模型开发环境如Knime和Orange,到各种用Java、c++编写的库,最常见的是Python。数据挖掘中通常涉及到四种任务: 分类:将熟悉的结构概括为新数据的任务 聚类:在数据中以某种方式查找组和结构的任务,而不需要在数据中使用已注意的结构。 http://www.360doc.com/content/22/1130/12/81182751_1058223585.shtml
14.数据分析中的数据挖掘需要哪些工具数据分析中的数据挖掘需要以下工具:一、数据库管理工具;二、ETL工具;三、数据可视化工具;四、统计分析工具;五、机器学习工具;六、自然语言处理工具;七、大数据处理工具;八、Web爬虫工具;九、时间序列分析工具;十、图像处理工具;十一、数据挖掘工具。 一、数据库管理工具 https://www.linkflowtech.com/news/1596
15.什么是BI工具?BI工具(Business Intelligence Tool)是一种用于管理和分析企业数据的软件工具。它可以从多个数据源获取和整合数据,进行数据挖掘和分析,并将分析结果以报表、图表等方式呈现出来,帮助企业快速了解业务状况、识别问题和机会,并做出决策。 BI工具主要具有以下特点: https://www.parllay.cn/resources/35122.html
16.数据仓库服务DWS什么是数据仓库服务数据加载工具、ETL(Extract-Transform-Load)工具、以及商业智能BI工具、数据挖掘和分析工具,均可以通过标准接口与GaussDB(DWS) 集成。GaussDB(DWS)兼容PostgreSQL生态,且SQL语法进行了兼容Oracle和Teradata的处理。应用只需做少量改动即可向GaussDB(DWS)平滑迁移。 https://ecloud.10086.cn/op-help-center/doc/article/32102
17.RapidMinerStudio绿色版RapidMiner Studio是一款非常专业的数据挖掘图形化工具,具有1500多种机器学习算法和函数的库,这款工具的主要作用是帮助用户用户免费提供数据挖掘技术和类库,包括客户流失预测,欺诈检测,预测性维护等。有着非常大程度上的先进技术,最大特色就是图形用户界面的互动原型。 http://www.winwin7.com/soft/38748.html