浅谈对历史频谱数据的数据挖掘

国家新闻出版广电总局五五三台自1955年建立伊始就承担着我国广播监测的繁重任务,60多年来频谱负荷收测一直是我台的主要工作之一,经过台内几代收测人员的辛勤劳动,我台现存放着自上世纪50年代至今的海量频谱原始数据,包括国内中央台广播数据,以及大量我台能够收测到的海外对华广播及途径我台的海外广播,所涉电台、语种数目都极其庞大。通过合理利用这些数据,我们将能够得以从中窥探出世界广播发展、变革的轨迹,进而对我国目前的频谱资源管理提供有价值的信息和解决方案。然而,要达到这一目标,首先要解决如何从巨大体量的数据中挖掘有用信息和知识这一难题。

一、基于大数据的数据挖掘技术

(一)大数据的定义

(二)基于大数据的数据挖掘技术

二、对历史频谱数据的数据挖掘

(一)频谱资源和频谱资源管理

无线电频谱是一种非常宝贵且有限的自然资源,是属于国家的重要战略性资源。近年来,无线电频谱需求不断增加,频率冲突越来越严峻,给频谱资源的监测和管理带来了新的困难与挑战,对无线电频谱的监测与管理是有效使用无线电资源的前提,因此,如何开展对信道和频段使用情况的有效监测,记录全频段和全时段内所有信号的基础数据,掌握用频变化,评估信道占用度和利用率,把握频谱的整体使用情况,提高频谱感知与管理能力成为亟需解决的问题。

频谱资源管理是指对无线电频谱资源的使用进行规划与控制的活动,而无线电频率管理是无线电频谱管理的核心。为了对频谱资源进行合理的管理,我们不但必须掌握现阶段的用频情况,也需要对以往的频谱数据进行分析,掌握一段时期内的用频变化,以此来对下个阶段的无线电频率划分进行决策。

(二)历史频谱数据挖掘的过程模型

对于数据挖掘项目首先要建立过程模型,这里运用美国SPSS公司提出的5A模型,即评价需求(Assess)、存取数据(Access)、完备分析(Analyze)、模型演示(Act)、结果展现(Automate),来对历史频谱数据挖掘进行过程分析。

1.评价需求

通过对海量历史频谱监测数据的深入挖掘与分析,采用形式多样、丰富的统计方法,我们可以以文本、图片等多种形式提供直观、有效、全面的历年频谱资源展示,从而为目前的频谱资源管理提供综合性决策依据。我台频谱负荷收测主要涉及中短波广播业务,故此项目主要针对中短波广播频段频谱数据进行数据挖掘。

2.存取数据

利用Hadoop数据挖掘构架实现海量数据的快速存取,主要包括了大规模数据分析工具Pig、数据仓库工具Hive、分布式编程框架MapReduce、数据状态存储HCatalog、分布式数据库Hbase以及分布式文件系统HDFS等。

3.对历史频谱数据的分析

(1)频谱占用度分析

(2)已知电台分析

已知电台分析是以已知晓的各国际国内电台作为分类,在横向、纵向上对该台在我收测点附近的,可收测到的播音情况进行统计分析。通过电台分析,可以得知某一电台的播音总体变化,包括用频变化(点阵图或柱状图显示)、历年频时数变化(折线图显示)等等。同时,按照国家、地区、使用语言(节目内容)等对电台进行分类。建立数据字典,将某一台曾使用过的台名、归属、发射地进行统一录入,方便在统计分析数据时保持完整性。

(3)使用语言分析

使用语言分析是对已知电台所播的语言种类进行统计分析。通过对各台各频率使用语言的统计筛选,可以对以我国作为主要播向区的电台频率做进一步分析,包括用频变化(点阵图或柱状图显示)、频时总数变化(折线图显示)、发射方向图展示等等,对我们把握此类电台频率的整体变化趋势有着重要的作用。

(4)未知电台、语言分析

我台的历年频谱数据中,包括了一部分未知电台以及未知语言的频率。这一部分频率在频谱负荷表中以“?”表示,大多为能够收听到播音但无法通过播音内容或国际资料确定电台归属或播音语言的频率。对该类频率,可以通过对已知电台频率的数据分析,判断其可能的归属及播音语言。

4.频谱资源挖掘模型

数据挖掘的任务模式按照功能类型可以分成描述型和预测型两类,描述型任务一般用来刻画数据的常用特征,预测型任务则通过分析目标对象的模式和规律,对未来趋势做出合理判断。在频谱数据任务中,对历史频谱数据的分析可以归为描述型,而通过对未来频谱资源分配走向的分析则应归为预测型。

将任务进行分类后,需要将各个任务归纳入某一模型类型中。数据挖掘模型可以概括为三大类:聚类、分类、关联。聚类分析旨在发现不同的簇间的差异性;分类是将历史数据按照用户的需求进行区分;关联分析则是重在挖掘两个不同关键词的内在共性。对历史频谱数据的数据挖掘可以归为分类模型。

5.数据结果可视化展现

项目最终能够通过快捷全面的前端展示平台,快速显示历史频谱数据挖掘结果,以及对未来各电台频率变化走势的分析结果,让数据以更为灵活、直观、可视化的方式表达出来。展示平台主要应能实现:3D频谱、频谱数据地域性展示、统计数据多样化展示等。

三、结束语

无线广播频谱监测与管理系统通过对大量实测数据的分析,能够直观的向用户展示各项历史数据、频谱占用情况、非法电台等大数据背后的信息,这些对频谱资源的分析、合理利用正是我们搭建无线广播频谱监测与管理系统的最终目标。而如何在庞大的数据中更高效地进行对数据的甄别、挖掘,从而向用户提出有用、合理的频谱资源问题的解决方案,是我们亟待解决的问题。

THE END
1.数据挖掘师在市场中的地位与未来的展望随着大数据技术的飞速发展,数据挖掘这一领域也迎来了前所未有的爆炸性增长。作为一名专业的数据分析人员,数据挖掘师不仅需要具备深厚的数学和统计学知识,还要有强大的编程能力以及对业务模式的深刻理解。在这个信息爆炸时代,能够从海量数据中提取有价值信息的人才是最宝贵的。 https://www.f3kg3td6j.cn/jun-lei-zi-xun/496259.html
2.数据挖掘类文章属于什么类型mob64ca12e83232的技术博客数据挖掘是一种从大量数据中提取隐含的、有用信息和知识的过程。它涉及统计学、机器学习、数据库技术等多门学科,因此数据挖掘类文章通常属于数据分析、机器学习和统计学等类别。本文将介绍数据挖掘的基本概念,并结合具体的代码示例,展示如何使用Python进行简单的数据挖掘任务。 https://blog.51cto.com/u_16213397/12827058
3.数据挖掘的主要任务是什么帆软数字化转型知识库数据挖掘的主要任务是发现数据中的模式和关系、进行预测分析、分类和聚类、异常检测、回归分析、关联规则挖掘。其中,发现数据中的模式和关系是数据挖掘的核心任务。这一任务旨在通过分析大量数据来找到其中隐含的规律和结构,以便为决策提供依据。例如,零售行业可以通过数据挖掘发现顾客的购买模式,从而优化库存和营销策略。通https://www.fanruan.com/blog/article/592592/
4.数据挖掘论文(一)数据挖掘技术。数据挖掘是指从大量的、不规则、乱序的数据中,进行分析归纳,得到隐藏的,未知的,但同时又含有较大价值的信息和知识。它主要对确定目标的有关信息,使用自动化和统计学等方法对信息进行预测、偏差分析和关联分析等,从而得到合理的结论。在档案管理中使用数据挖掘技术,能够充分地发挥档案管理的作用,从https://www.unjs.com/lunwen/f/20220924130749_5650839.html
5.数据挖掘关联分析浓淡1.数据挖掘对出版社的作用 数据挖掘的主要任务就是设计各种有效的算法,从大型数据库的数据中发现人们感兴趣的、事先未知的、潜在的有用信息。它与传统的数据分析方法不同,数据挖掘要处理海量数据。出版社利用数据挖掘,可以对客户和出版品种进行分类,提高出版质量,减少出版物的滞销和积压,并了解近期消费者的消费模式变https://blog.sina.com.cn/s/blog_4961fb7d0100djo6.html
6.C语言在数据挖掘中的作用编程语言C语言在数据挖掘中扮演着重要的角色,尽管它可能不是最常用的工具,但它的性能和灵活性使其在特定情况下非常有用。C语言在数据挖掘中的应用主要体现在以下几个方面: C语言在数据挖掘中的作用 高效处理大数据:C语言允许程序员直接操作内存,提高程序的执行效率,适合处理大规模数据集和复杂计算任务。 自定义算法开发:Chttps://m.yisu.com/zixun/942501.html
7.数据分析与挖掘11篇(全文)近年来,数据挖掘技术经过不断发展,已经成为一个涉及多个学科的交叉型综合学科。通常而言,经典的数据挖掘算法都可以直接用到Web数据挖掘上来,但为了提高挖掘质量,要在扩展算法上进行了研究,包括复合关联规则算法、改进的序列发现算法等。 2. Web数据挖掘的概念 https://www.99xueshu.com/w/ikeyp687ycyz.html
8.什么是数据挖掘,简述其作用和应用。数据挖掘是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。数据挖掘的作用体现在数据挖掘的定义上,https://zhidao.baidu.com/question/436954503.html
9.数据挖掘技术涵盖三大核心组成部分(数据挖掘的含义和核心任务)数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。 有。国内外有用数据挖掘技术判断西瓜好坏分析的。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 https://www.kangle.im/post/135381.html
10.什么是数据挖掘?数据挖掘的目标是什么?数据挖掘的目的数据挖掘的任务 任务分为两大类,分别是预测类和描述类任务。 预测任务:这些任务的目标都是根据其他属性的值进而预测特定属性的值,被预测的属性一般称为目标变量或因变量,而用来做预测的属性一般称为说明变量或者自变量。 四种数据挖掘的主要任务如图所示,由于本章是导论不会他们进行展开讲解,会在后续更新中完善。 https://blog.csdn.net/Chahot/article/details/123552967
11.数据挖掘数据挖掘原理与应用然后将论述如何在SSIS环境中执行数据挖掘的任务。在本章中,将学习:●SSIS的基本概念,包括控制流和数据流●在SSIS中执行与数据挖掘相关的转换和任务,包括这些转换和任务的用法●基于术语“提取转换”和术语“查找转换”的文本挖掘解决方案 12.1SSIS介绍 SSIS首先是在1997年的SQLServer7.0中引入的,当时它的名称为数据转换https://www.docin.com/touch/detail.do?id=548859195
12.数据挖掘工作总结(通用8篇)---数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。 一、专业技能 硕士以上学历,数据挖掘、统计学、数据库相关专业,熟练掌握关系数据库技术,具有数据库系统开发经验 熟练掌握常用的数据挖掘算法 具备数理统计理论基础,并熟悉常用的统计工具软件 二、行业知识https://www.360wenmi.com/f/file17l2qeo4.html
13.数据挖掘机器学习总结(通用6篇)数据挖掘机器学习总结 篇2 20xx年我项目部认真贯彻落实实施公司各种要求,通过广大干部职工的共同努力,顺利的完成了矿方给项目部所下达各项任务,在和矿派管理人员双重安全管理模式下,不但最大限度地稳定了队伍,而且也很好地磨合了队伍锤炼了队伍,生产经营也取得了重大的突破,20xx年产值突破了3.5亿元,项目部现在目前有120https://www.yjbys.com/zongjie/xuexi/697188.html
14.数据科学与大数据技术导论(一)课程的性质、地位、作用和任务 《数据科学与大数据技术导论》课程是运用概率统计、分布式计算、现代软件等综合知识探索来自商业贸易,生物医疗,金融证券,社交网络等众多领域的较大规模或结构复杂数据集的高效存储、高效管理、高效概括、深入分析和精准预测的科学和艺术。它是现代计算机科学教育中的一门核心课程,是一门https://www.scholat.com/course/hdbigdata
15.专论去年四月,国务院发布了《关于扶持和促进中医药事业发展的若干意见》,确定了新时期发展中医药事业的指导思想、基本原则,明确了扶持促进中医药在医疗、保健、教育、科研、产业、文化六位一体的全面协调发展的主要任务和政策措施,强调了要在深化医药卫生体制改革中充分发挥中医药的作用。中医药传承与创新发展已列为国家中https://zynj.shutcm.edu.cn/2019/0626/c4372a110438/page.htm
16.什么是数据挖掘?三、数据挖掘的任务 数据挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。1. https://www.zhihu.com/question/19637218/answers/updated
17.办公室工作总结(精选17篇)将“员工正能量”凝聚到公司目标上来,使员工与公司发展息息相关,促使企业与员工形成利益共同体,为完成xx年生产经营任务作出了积极地贡献。 (五)数据管理,服务领导决策 企业管理是数据管理。我们运用“大数据”理念,把企业运营的海量数据通过高速的采集、整理、分析、挖掘,从大容量的多样数据中经济地提取价值。建立了https://www.ruiwen.com/gongwen/gongzuozongjie/1221633.html
18.数据挖掘论文(优选10篇)分在商业数据处理技术中,整合商业数据提取和转化机制,并且建构更加系统化 的分析模型和处理机制,从根本上优化商业决策。借助数据挖掘技术能建构完整 的数据仓库,满足集成性、时变性以及非易失性等需求,整和数据 处理和冗余参 数,确保技术框架结构的完整性。 http://www.360doc.com/content/23/1127/11/82785916_1105448548.shtml
19.Weka中数据挖掘与机器学习系列之基本概念(三)数据挖掘和机器学习这两项技术的关系非常密切。机器学习方法构成数据挖掘的核心,绝大多数数据挖掘技术都来自机器学习领域,数据挖掘又向机器学习提出新的要求和任务。 数据挖掘就是在数据中寻找模式的过程。这个寻找过程必须是自动的或半自动的,并且数据总量应该是具有相当大的规模,从中发现的模式必须有意义并能产生一定的https://www.cnblogs.com/zlslch/archive/2004/01/13/6838270.html
20.数据挖掘基本任务数据挖掘主要做什么?换而言之,数据挖掘主要解决什么问题呢?这些问题,可以归结为数据挖掘的基本任务。 数据挖掘的基本任务包括分类与预测、聚类分析、关联规则、奇异值检测和智能推荐等。通过完成这些任务,发现数据的价值,指导商业抉择,带来商业新价值。 关于这些基本任务,简单描述如下。实际上对每个基本任务,可以看做是数https://www.cda.cn/view/21150.html
21.数据挖掘的主要任务数据挖掘的主要任务 东奥美国注册管理会计师 2024-12-06 14:51:15 相关剖析 两个或两个以上变量的取值之间存在某种规律性,就称为相关。数据相关是数据库中存在的一类重要的、可被发现的常识。相关分为简略相关、时序相关和因果相关。相关剖析的目的是找出数据库中隐藏的相关网。https://www.dongao.com/cma/zy/202406194446895.html