数据挖掘工程师笔试及答案整理elar

一、简答题(30分)1、简述数据库操作的步骤(10分)

步骤:建立数据库连接、打开数据库连接、建立数据库命令、运行数据库命令、保存数据库命令、关闭数据库连接。

经萍萍提醒,了解到应该把preparedStatement预处理也考虑在数据库的操作步骤中。此外,对实时性要求不强时,可以使用数据库缓存。

2、TCP/IP的四层结构(10分)

3、什么是MVC结构,简要介绍各层结构的作用(10分)

Model、view、control。

二、算法与程序设计(45分)1、由a-z、0-9组成3位的字符密码,设计一个算法,列出并打印所有可能的密码组合(可用伪代码、C、C++、Java实现)(15分)

把a-z,0-9共(26+10)个字符做成一个数组,然后用三个for循环遍历即可。每一层的遍历都是从数组的第0位开始。

2、实现字符串反转函数(15分)

KMeans方法一个很重要的部分就是如何定义距离,而距离又牵扯到特征向量的定义,毕竟距离是对两个特征向量进行衡量。

本题中,我们建立一个table。

只要两个关键词在同一个user的描述中出现,我们就将它在相应的表格的位置加1.

这样我们就有了每个关键词的特征向量。

例如:

<手机>=(1,1,2,1,1,1,0,0)

<智能手机>=(1,1,1,1,0,0,0,0)

我们使用夹角余弦公式来计算这两个向量的距离。

夹角余弦公式:

设有两个向量a和b,,

所以,cos<手机,智能机>=(1+1+2+1)/(sqrt(7+2^2)*sqrt(4))=0.75

cos<手机,iphone>=(2+1+2+1+1+1)/(sqrt(7+2^2)*sqrt(2^2+5))=0.80

通过夹角余弦值我们可以计算出每两个关键词之间的距离。

KMeans算法有两个主要步骤:1、确定k个中心点;2、计算各个点与中心点的距离,然后贴上类标,然后针对各个类,重新计算其中心点的位置。

初始化时,可以设定k个中心点的位置为随机值,也可以全赋值为0。

KMeans的实现代码有很多,这里就不写了。

不过值得一提的是MapReduce模型并不适合计算KMeans这类递归型的算法,MR最拿手的还是流水型的算法。KMeans可以使用MPI模型很方便的计算(庆幸的是YARN中似乎开始支持MPI模型了),所以hadoop上现在也可以方便的写高效算法了(但是要是MRv2哦)。

如果是指词频统计的话,个人认为可以使用Jaccard系数来计算。

通过第一问中的表格,我们可以知道某个关键词的向量,现在将这个向量做一个简单的变化:如果某个分量不为0则记为1,表示包含这个分量元素,这样某个关键词就可以变成一些词语的集合,记为A。

客户输入的关键词列表也可以表示为一个集合,记为B

Jaccard系数的计算方法是:

所以,假设某个用户userX的关键词表达为:{三星手机,手机,平板电脑}

J("手机",“userX关键词”)=|{三星手机,手机,平板电脑}|/|{手机,智能手机,iphone,台式机,笔记本电脑,三星手机,HTC,平板电脑}|=3/8

J("三星手机",“userX关键词”)=|{手机,三星手机}|/|{手机,三星手机,iphone,笔记本电脑,平板电脑}|=2/5

三、系统设计题(25分)一维数据的拟合,给定数据集{xi,yi}(i=1,…,n),xi是训练数据,yi是对应的预期值。拟使用线性、二次、高次等函数进行拟合线性:f(x)=ax+b二次:f(x)=ax^2+bx+c三次:f(x)=ax^3+bx^2+cx+d(1)请依次列出线性、二次、三次拟合的误差函数表达式(2分)

误差函数的计算公式为:

系数1/2只是为了之后求导的时候方便约掉而已。

那分别将线性、二次、三次函数带入至公式中f(xi)的位置,就可以得到它们的误差函数表达式了。(2)按照梯度下降法进行拟合,请给出具体的推导过程。(7分)

假设我们样本集的大小为m,每个样本的特征向量为X1=(x11,x12,...,x1n)。

那么整个样本集可以表示为一个矩阵:

其中每一行为一个样本向量。

我们假设系数为θ,则有系数向量:

对于第i个样本,我们定义误差变量为

我们可以计算costfunction:

由于θ是一个n维向量,所以对每一个分量求偏导:

梯度下降的精华就在于下面这个式子:

这个式子是什么意思呢?是将系数减去导数(导数前的系数先暂时不用理会),为什么是减去导数?我们看一个二维的例子。

假设有一个曲线如图所示:

假设我们处在红色的点上,那么得到的导数是个负值。此时,我在当前位置(x轴)的基础上减去一个负值,就相当于加上了一个正值,那么就朝导数为0的位置移动了一些。

如果当前所处的位置是在最低点的右边,那么就是减去一个正值(导数为正),相当于往左移动了一些距离,也是朝着导数为0的位置移动了一些。

这就是梯度下降最本质的思想。

那么到底一次该移动多少呢?就是又导数前面的系数α来决定的。

现在我们再来看梯度下降的式子,如果写成矩阵计算的形式(使用隐式循环来实现),那么就有:

这边会有点棘手,因为j确定时,xij为一个数值(即,样本的第j个分量),Xθ-Y为一个m*1维的列向量(暂时称作“误差向量”)。

括号里面的部分就相当于:

第1个样本第j个分量*误差向量+第2个样本第j个分量*误差向量+...+第m个样本第j个分量*误差向量

我们来考察一下式子中各个部分的矩阵形式。

当j固定时,相当于对样本空间做了一个纵向切片,即:

那么此时的xij就是m*1向量,所以为了得到1*1的形式,我们需要拼凑(1*m)*(m*1)的矩阵运算,因此有:

如果把θ向量的每个分量统一考虑,则有:

关于θ向量的不断更新的终止条件,一般以误差范围(如95%)或者迭代次数(如5000次)进行设定。

梯度下降的有点是:

不像矩阵解法那么需要空间(因为矩阵解法需要求矩阵的逆)

缺点是:如果遇上非凸函数,可能会陷入局部最优解中。对于这种情况,可以尝试几次随机的初始θ,看最后convergence时,得到的向量是否是相似的。

(3)下图给出了线性、二次和七次拟合的效果图。请说明进行数据拟合时,需要考虑哪些问题。在本例中,你选择哪种拟合函数。(8分)

因为是在网上找的题目,没有看到图片是长什么样。大致可能有如下几种情况。

如果是如上三幅图的话,当然是选择中间的模型。

欠拟合的发生一般是因为假设的模型过于简单。而过拟合的原因则是模型过于复杂且训练数据量太少。

对于欠拟合,可以增加模型的复杂性,例如引入更多的特征向量,或者高次方模型。

对于过拟合,可以增加训练的数据,又或者增加一个L2penalty,用以约束变量的系数以实现降低模型复杂度的目的。

L2penalty就是:

(注意不要把常数项系数也包括进来,这里假设常数项是θ0)

另外常见的penalty还有L1型的:

(L1型的主要是做稀疏化,即sparsity)

(4)给出实验方案(8分)

2013网易实习生招聘岗位:数据挖掘工程师一、问答题a)欠拟合和过拟合的原因分别有哪些?如何避免?

欠拟合:模型过于简单;过拟合:模型过于复杂,且训练数据太少。b)决策树的父节点和子节点的熵的大小?请解释原因。

父节点的熵>子节点的熵

c)衡量分类算法的准确率,召回率,F1值。

d)举例序列模式挖掘算法有哪些?以及他们的应用场景。

Apriori

GeneralizedSequentialPattern(广义序贯模式)

PrefixSpan

二、计算题1)给你一组向量a,ba)计算二者欧氏距离

(a-b)(a-b)T

即:

b)计算二者曼哈顿距离

2)给你一组向量a,b,c,da)计算a,b的Jaccard相似系数

b)计算c,d的向量空间余弦相似度

或者

三、(题目记得不是很清楚)一个文档-词矩阵,给你一个变换公式tfij’=tfij*log(m/dfi);其中tfij代表单词i在文档f中的频率,m代表文档数,dfi含有单词i的文档频率。1)只有一个单词只存在文档中,转换的结果?(具体问题忘记)

2)有多个单词存在在多个文档中,转换的结果?(具体问题忘记)

3)公式变换的目的?

四、推导朴素贝叶斯分类P(c|d),文档d(由若干word组成),求该文档属于类别c的概率,并说明公式中哪些概率可以利用训练集计算得到。

五、给你五张人脸图片。可以抽取哪些特征?按照列出的特征,写出第一个和最后一个用户的特征向量。

六、考查ID3算法,根据天气分类outlook/temperature/humidity/windy。(给你一张离散型的图表数据,一般学过ID3的应该都知道)

a)哪一个属性作为第一个分类属性?

b)画出二层决策树。

七、购物篮事物(关联规则)一个表格:事物ID/购买项。1)提取出关联规则的最大数量是多少?(包括0支持度的规则)

2)提取的频繁项集的最大长度(最小支持>0)

3)找出能提取出4-项集的最大数量表达式4)找出一个具有最大支持度的项集(长度为2或更大)

5)找出一对项a,b,使得{a}->{b}和{b}->{a}有相同置信度。

八、一个发布优惠劵的网站,如何给用户做出合适的推荐?有哪些方法?设计一个合适的系统(线下数据处理,存放,线上如何查询?)

THE END
1.数据挖掘概念(AnalysisServices有关如何将 SQL Server 工具应用于业务方案的示例,请参阅数据挖掘基础教程。 定义问题 与以下关系图的突出显示相同,数据挖掘过程的第一步就是明确定义业务问题,并考虑解答该问题的方法。 该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。这些任务转换为下列问题: https://technet.microsoft.com/zh-cn/library/ms174949(en-us,sql.105).aspx
2.数据挖掘类文章属于什么类型mob64ca12e83232的技术博客数据挖掘类文章属于什么类型 数据挖掘是一种从大量数据中提取隐含的、有用信息和知识的过程。它涉及统计学、机器学习、数据库技术等多门学科,因此数据挖掘类文章通常属于数据分析、机器学习和统计学等类别。本文将介绍数据挖掘的基本概念,并结合具体的代码示例,展示如何使用Python进行简单的数据挖掘任务。https://blog.51cto.com/u_16213397/12827058
3.数据挖掘师在市场中的地位与未来的展望随着大数据技术的飞速发展,数据挖掘这一领域也迎来了前所未有的爆炸性增长。作为一名专业的数据分析人员,数据挖掘师不仅需要具备深厚的数学和统计学知识,还要有强大的编程能力以及对业务模式的深刻理解。在这个信息爆炸时代,能够从海量数据中提取有价值信息的人才是最宝贵的。 https://www.f3kg3td6j.cn/jun-lei-zi-xun/496259.html
4.《电子商务概论》习题及答案1、电子交易交换数据、获得数据自动捕获数据信息技术核心基础对象目的电报当贸易开始以莫尔斯码点和线的形式在电线中传输的时候计算机的电子数据处理技术20世纪70年代末结构性特点动态性特点社会性特点层次性特点商务性、服务性、集成性、可扩展性、安全性协调性商务性安全性SET(安全电子交易SSL(安全套接层协议层业务全球https://www.360doc.cn/document/80521207_1047343768.html
5.数据挖掘一些面试题总结(DataMining)基于web数据挖掘技术有哪些数据挖掘一些面试题总结(Data Mining) Data-Mining试题 2011Alibaba数据分析师(实习)试题解析 一、异常值是指什么?请列举1种识别连续型变量异常值的方法? 异常值(Outlier) 是指样本中的个别值,其数值明显偏离所属样本的其余观测值。在数理统计里一般是指一组观测值中与平均值的偏差超过两倍标准差的测定值。https://blog.csdn.net/bentley2010/article/details/7746335
6.人工智能经典习题集及各章总结(期末考试必备)江阴雨辰互联2.人工智能研究的基本内容是什么? 解:基本内容是:搜索技术、知识表示、规划方法、机器学习、认知科学、自然语言理解与机器翻译、专家系统与知识工程、定理证明、博弈、机器人、数据挖掘与知识发现、多Agent系统、复杂系统、足球机器人、人机交互技术等。 3.人工智能主要有哪几大研究学派? https://www.yc00.com/xiaochengxu/1690506190a360936.html
7.医德医风与职业道德(精选8篇)1、简述什么是医德?什么是医德修养? 答: 2、请回答出《执业医师法》中规定的医师在执业活动中应履行的义务?答: 3、请回答出医院在医德医风群众监督方面采取了哪些措施? 答: 4、请回答开展“三好一满意”活动的主要目的。答: 5、请回答非国家工作人员受贿、行贿立案追诉标准。答: https://www.360wenmi.com/f/file7i1sov06.html
8.上海财经大学保研有什么要求培养具备良好的政治素养和职业道德,具有扎实的统计背景,能熟练掌握数据采集、处理、分析和开发技能,具备互联网数据挖掘和计算机数据处理技术,具有对现实经济、社会问题进行统计分析和解决能力,能够采用数据科学领域中的各种方法有效解决在信用卡风险、营销分析等商务领域的相关问题的高端人才。 http://www.okaoyan.com/baoyanxialingying/450293_20.html
9.Spark经典面试题汇总《一》总的来说,Spark具有高效的性能、容错性、多语言支持、强大的数据处理能力和良好的可扩展性,适用于各种大规模数据处理任务,如机器学习、图像处理、数据挖掘、日志分析等。 2Spark有几种部署方式,请分别简要论述? Spark有三种常见的部署方式,分别是本地模式、单例模式和Yarn模式。 https://blog.itpub.net/70024924/viewspace-2937152/
10.问答题:请简述数据挖掘的主要任务。答案:数据挖掘的主要任务包括数据预处理、探索性数据分析、数据变换、特征选择、模型构建和模型评估等。其中,数据预处理包括数据清理、集成、转换和归约等;探索性数据分析是通过可视化等方法来了解数据的分布和特征;数据变换是通过规范化、标准化或编码等手段将数据进行转换,使其更适合进一步分析;特征选择是从数据中选取https://easylearn.baidu.com/edu-page/tiangong/questiondetail?id=1776600137396358135&fr=search
11.ai论文写作app申请课题数据挖掘是指从大量数据中自动发现模式,生成规则,并对数据进行分析和预测的一种技术。在课题申请中,数据挖掘可以用来分析历史申请数据,预测课题的成功率等。 例如,我们可以使用数据挖掘技术来分析历史课题申请数据,找出成功的课题申请的共同特点,然后针对这些特点来优化自己的课题申请。 https://tool.a5.cn/article/show/78290.html