高内涵筛选技术的原理及其在生态毒理学的应用

随着现代工业进步,人类合成、使用和间接产生的化合物的数量和种类在不断增长,其中包括了化工原料、阻燃剂、农药、增塑剂、食品添加剂、药物、天然化合物及衍生物、饮用水消毒副产物和化学合成副产物等多个类别[1-2]。然而由于在对化合物毒性作用方面认识的不足,绝大多数的化合物缺乏有效监管,部分化合物因此能够以直接或间接的方式进入环境,成为环境污染物。事实上,根据美国国家毒理规划处(NTP)生物分子筛选部负责人Tice等[2]在2013年的估计,至少有数万种存在于环境中的污染物仍然缺乏足够的毒理学数据来预测其对人类和生态系统的影响。所以在生态毒理学领域,对这些化合物展开环境危害性和毒理特性鉴定,进行风险管理显得尤为必要而迫切。为此,美国环境保护局(EPA)在2011年已开始推进新一代的健康风险评估(NexGen)项目,NexGen项目强调了体外高通量毒性筛选在揭示化合物毒性作用机制方面的重要性[3],而该项目的实施对中国的毒理学发展具有借鉴意义。

模式动物的活体毒性测试由于通量低、成本高和周期长已不能满足当前巨量化合物毒性评价的需要,为了应对毒理学领域所面临的新挑战,2007年加拿大国家研究委员会(NRC)的“21世纪毒性测试:一种远见与策略”报告[4]为毒理学领域新世纪的发展奠定了基石。该报告不仅提出了21世纪毒性测试应当从活体生物检测向高通量的离体检测转变,更期望采用离体生物检测去揭示化合物毒性作用机制,从而使在这个框架下所进行的风险科学具有充分的科学依据。毒性作用机制的研究是以毒性途径紊乱(perturbationsoftoxicitypathways)为观察指标[4],这一特点与传统离体或活体生物检测中,以死亡、突变、肿瘤形成等细胞或动物终点事件(apicalendpoints)为观察指标所不同。而所谓的毒性通路在NRC的报告中被定义为:正常细胞受外来化合物干扰后所产生的,能导致损害健康效应的细胞内应答通路[4]。为了对这一观察指标进行全面的衡量,新的高通量生物检测方法仍然有待进一步的发展。

高内涵筛选(HighContentScreening,HCS)是新型的高通量化合物毒性检测方法,能够在保持细胞结构和功能完整的基础上,运用多种荧光标记物标记细胞,自动化地对细胞内多靶点的复杂表型(phenotype)进行筛选[5-7]。不同筛选条件下产生的表型特征既包括了完整细胞所表现的凋亡、坏死、增殖、迁移等形式,还包括了细胞内的细胞器损伤、信号转导、代谢途径以及遗传损伤等[8]。不同于传统离体生物检测中以细胞内单靶点的作用为检测端点,HCS以高内涵(highcontent)的方式呈现化合物暴露下所产生的多维表型信息[9],从而系统的对化合物的毒性作用机制展开研究[10],更好的对化学污染物进行风险评估。

当前随着HCS设备及分析技术的长足的进步,HCS技术已在毒理学、药理学和医学领域有了极大的发展,在生态毒理学领域,HCS的应用亦在积极的展开。本文系统介绍了HCS技术原理,在此基础上总结了HCS在当前生态毒理学领域的应用,并对其发展前景和所面临的挑战进行了展望。

1.1HCS概念

光学显微镜设备在自动化程度和图像收集速率的提高促进了HCS的发展,研究人员已可以利用图像分析方法在单细胞水平展开研究。因为HCS以完整细胞为研究对象,细胞结构和功能完整,真实反应了细胞内的毒性作用机制[11]。细胞荧光图像是HCS获取数据的主要手段,特异性荧光探针或荧光蛋白的采用使细胞内不同结构被多种荧光信号同时标记,从而反应细胞表型。能够被HCS检测得到的表型变化除包括标记点的荧光强度改变外,还有细胞或细胞内结构形态变化。图像分析技术使得表型变化的定量分析成为可能,每个细胞的荧光和形态学特征得以被聚类和分类等数据挖掘手段所整合分析,从而转换为可解释的多维细胞表型信息,这种多生物学信息呈现方式拓宽了我们对化合物毒性作用机制的理解和认识。

1.2HCS实验流程

1.3样品制备和暴露

常规的HCS过程同样依赖于实验员的操作,需要进行细胞培养、化合物暴露和细胞染色等一系列样品前处理过程,这在大规模高通量化合物的HCS中会造成了2方面的影响,一方面384、1536等多孔板的应用增加了实验员的操作难度;另一方面,实验员在操作的过程中容易引入人为误差,整个实验的质量控制难以保证[13]。因此在大规模高通量的HCS中,样品制备和暴露更依赖于自动化的液体处理设备,尽管当前自动化液体处理设备价格较高,但其引入使得实验的整体精度、重复性和可靠性被极大的增强,并满足了大部分液体处理的需要。目前,已有多个生物公司,如Tecan,PerkinElmer等都开发了自己的液体处理设备。

1.4图像获取

表1高内涵筛选平台

1.5图像分析与数据挖掘

1.6生物数据库系统

Keefer等估计,一个HCS平台每年数据产出量在500GB~6TB左右[10]。如此高的数据产出,不仅要求在数据分析过程中采用并行甚至集群计算,数据的储存和调用也依赖于服务器。但是,几乎每个HCS设备提供商都以各自格式储存数据,这导致显微实验中图像格式冗余,制约了HCS数据库的管理和维护[12]。OME以增强HCS分析软件之间的互通性为目的而开发的“Bio-format”已得到各个软硬件的广泛支持,使HCS中统一的数据管理成为可能[24]。HCS的数据库系统除了有传统的商业数据库Oracle[25],MDCStoreTM和ColumbusTM等,HCS开源数据库SIDB[26]和OME的OMERO[27]也有了广泛的应用。

表2HCS主要的应用领域和研究对象[28]

2.1遗传毒性

遗传毒性用于描述某化合物能够直接或间接的方式引起DNA或染色体损伤的性质,具有这种性质的化合物被称为遗传毒物[29]。工业污染使众多潜在的遗传毒物进入环境介质,而遗传毒物对生物胚胎细胞和体细胞的损害可能引起多种疾病,包括了新生儿畸形和癌症生成等[30]。因此为了对这些化合物进行监管,需要对其遗传毒性定量测定,而相比于传统遗传毒性评价方法,HCS在具有较高的灵敏度和特异性同时,能够高通量的检测多个遗传毒性指标,因此应用广泛。

2.1.1细胞周期阻滞

2.1.2特定DNA损伤检测

DNA损伤具有多种类别,包括了氧化性DNA损伤、DNA加合物、DNA甲基化、双链DNA损伤等[29],其中8-OHdG[36]、DNA甲基化结合蛋白[37]和磷酸化组蛋白H2AX(γH2AX)[38]分别是氧化性DNA损伤、DNA甲基化和双链DNA损伤特异性标志物。采用免疫荧光方法,能标记特定的DNA损伤标志物,并通过HCS高通量来对化合物DNA损伤类型进行判定。Barber[39]和Kim等[40]以抗体标记γH2AX,并采用HCS来对生成的γH2AXfoci进行定量分析,通过该方法可以对遗传毒物的作用机制有一定了解。

2.1.3微核试验

微核实验是在细胞核水平对遗传毒性进行评价,微核的生成存在2种机制,一种是由遗传毒物干扰细胞分裂器所引起的[41],这使得生成的绝大部分微核中含有着丝点或着丝粒,这类遗传毒物被称为非整倍体断裂剂,能间接的造成遗传毒性。另一种微核生成是由高水平的DNA损伤引起的[32],这种机制与CyclinB1浓度含量有关[42]。微核生成前,细胞核内已发生严重的基因突变和染色体损伤断裂,然而过低的CyclinB1浓度使得纺锤体组装检验点(spindleassemblycheckpoint,SAC)并不会被激活,因此DNA严重损伤的细胞被迅速退出M期,导致部分脱核的染色体形成微核[42-45]。基于这一机制生成微核的遗传毒物被称为染色体断裂剂[41],其能直接的对DNA造成高水平的损伤。这2种微核生成的机制是细胞微核实验的基础。

2.2器官毒性评价

2.3神经毒性评价

2.4化合物作用机制

当前,HCS在对海量化合物作用机制(modeofaction,MoA)的研究已经极大的促进了药物筛选的发展[5],尽管药物筛查和生态毒理学这2个领域中对化合物的毒性测试的出发点和目的性都不尽相同,但是药筛过程中利用HCS展开海量化合物的MoA研究方法对生态毒理学中HCS的应用提供了有益的参考。药物筛查的目的是在药物研发的初期,在大型化合物文库(chemicallibrary)中寻找针对特定药物作用靶点(target)具有生物活性的化合物。而对于同一靶点有效的化合物也可能会发生脱靶效应(off-targeteffect),即化合物会同时对特定靶点以外的体内生物大分子结合,这可能导致该化合物在药物开发后期被发现具有严重的副作用而造成巨大经济损失[60-62]。正因如此在药物筛查的过程中应尽早发现化合物的脱靶效应,所以需要在这一过程中对化合物的MoA展开研究[63]。尽管生物组学技术的发展,如基因芯片、转录组测序等已能够有效的寻找化合物的MoA,但是高昂的成本使其难以在大规模的药物筛查中展开,而利用HCS对产生的细胞多维表型进行挖掘,能够了解化合物的MoA,寻找到目标化合物[33]。

2.5RNA干扰和cDNA过表达

RNA干扰[70]和cDNA过表达[71]技术的应用使我们得以以“lossoffuction”和“gainoffunction”的遗传学手段来研究化合物的MoA,在药理学领域提出了化学遗传学(chemicalgenetic)的概念[72],其目的是对化合物库中的小分子化合物进行筛查来研究这些化合物对生物大分子和信号转导通路的影响,也是为了发现新的药物作用靶点。HCS能够同时对基因表达变化和化合物处理所引起的细胞表型的微小改变做出响应,化学遗传学中通常采用RNA干扰文库和化合物文库并行HCS(parallelHCS)[66,73],来探索两者细胞表型之间的关系。两种文库中筛选产生的细胞表型首先被聚类,在同一个聚类类别中,筛选出的化合物可能和这个类别下所沉默的基因导致相同的表型,因此可以认为这些化合物能够干扰该沉默基因原本的表达,从而找到潜在的药物靶标和生物标记物。

在生态毒理学领域,更多的应用是通过RNA干扰和cDNA过表达技术来构建基因低表达和过表达系统,HCS也能灵敏的检测到构建前后的表型差异。例如,尽管HepG2细胞被广泛的应用于肝毒性检测,但是多种CYPs在这种细胞模型中表达量较低[74],不利于模拟体内肝脏的代谢功能,Tolosa等[75]利用cDNA过表达技术在HepG2细胞中过表达多个CYPs,该细胞模型与原代肝细胞中CYPs表达量相类似,因此显著提高了HCS对肝毒性检测的灵敏度。

当前HCS已发展到一个新的阶段,性能日益强大的设备拓展了HCS在生态毒理学的应用,但HCS并不仅仅依赖于设备本身,更需要利用海量数据去回答亟待解决的生物学问题,因此数据库系统和数据挖掘已成为了HCS应用所要着力加强的地方。

在面对从活体向离体毒性实验转换的过程中出现的新问题,一些新的生物学技术也应当在HCS中得到进一步的应用。例如三维细胞培养技术,因为尽管单层细胞培养具有众多优点,但是单层细胞不能很好的模拟细胞在体内真实的生理状态,缺乏细胞间通讯机制,培养周期短且只适合单种细胞类型细胞培养[76]。在药物毒理学领域,已有多项证据表明了这种差异性对特定器官毒性评价时会产生不利影响[77]。例如曲伐沙星(trovafloxacin)在临床使用过程中首先被发现有很强的肝毒性[78],而在对人源肝细胞(hepatocyte)药物筛查期间并没有明显的毒性作用[79],最近的研究表明,可能是体内肝脏细胞与单层细胞培养模型间的差异造成的[80]。而三维细胞培养模型[81]能够部分弥补单层细胞培养模型的不足,模拟更真实的体内细胞生长环境。得益于HCS设备性能的提高,利用HCS基于三维培养细胞对化合物进行毒性评价也展开了探索性的研究[82]。

【摘要】大量存在于环境中的有毒污染物仍然缺乏足够的毒理学数据来对其进行有效的监管,为了满足海量化合物毒性评价的需要,基于离体生物测试的高通量毒性筛选方法在近些年得到了迅猛的发展。高内涵筛选技术是新型的高通量化合物毒性筛选方法,该方法最显著的特点是能够在保持细胞结构和功能完整的基础上同时获取多种毒性指标。因此在简介高内涵筛选技术原理的基础上,综述了其在生态毒理学领域已有的应用,并针对性地对高内涵筛选技术的发展和挑战进行了展望。

【期刊名称】生态毒理学报,2015(010)002

【关键词】高内涵筛选;高通量筛选;离体毒性测试;生态毒理学

THE END
1.数据挖掘有什么作用与意义帆软数字化转型知识库数据挖掘的作用与意义在于能够帮助企业和组织:发现隐藏模式、提高决策质量、预测未来趋势、优化资源配置、提升客户满意度、推动创新。其中,发现隐藏模式尤为重要,因为数据挖掘能从海量数据中提取出有价值的信息和知识,这些信息可能是传统分析方法难以发现的。通过算法和技术手段,企业可以识别出一些潜在的、影响业务发展的关键https://www.fanruan.com/blog/article/575539/
2.数据挖掘的主要技术和应用其中,$\rho(x, r)$ 是数据点$x$的邻域密度,$r$ 是邻域半径。 在下面的部分中,我们将详细介绍关联规则挖掘、决策树、支持向量机和随机森林的核心算法原理、具体操作步骤以及数学模型公式。 4. 具体代码实例和详细解释说明 在本节中,我们将通过具体的代码实例来详细解释数据挖掘算法的实现。 https://blog.csdn.net/universsky2015/article/details/137300243
3.专业认知实习报告规则推导:从统计意义上对数据中的“如果-那么”规则进行寻找和推导。 通过刘勇老师对数据库挖掘的讲解,我明白了数据库挖掘的作用,通过数据挖掘可以把一些对自己有价值信息,在海量的数据库信息中抽取出来,然后来供自己使用。也让我明白了数据库挖掘的一些基本方法和原理。老师的讲解激发了我对数据库的兴趣。同时了解到https://www.ruiwen.com/shixibaogao/8009542.html
4.2019届毕业设计(论文)阶段性汇报为解决这个问题,本项目利用双曲空间的性质,考虑其上等距变换群的一个子群,及其作用于双曲空间上包含原点的基本域,利用其等距性质,双曲空间中任何两点的距离都可以通过该子群的元素和基本域上的点来进行计算,避免距离计算对于噪声等偏差的敏感性,更进一步的,我们可以更加精确的存储这些数据,精确计算距离和相应导数,https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3366
5.数据挖掘原理与应用试题及答案汇总试卷1~12.docx数据挖掘原理与应用试题及答案试卷一答案:解:BADDA二、解:二、解:,I, _count?=a,)xcount(B=b)UJ-■ ?en300x450 ~ en300x450 ~ =901500e!2I?。。*45。=3601500300x1050 二2101500e221200x1250 … =8401500所以(25°-9。产(25°-9。产+(5。一21所90210(200-360)2+ 360+(1000-8W840=284.https://m.renrendoc.com/paper/234057418.html
6.数据分析与挖掘11篇(全文)近年来,数据挖掘技术经过不断发展,已经成为一个涉及多个学科的交叉型综合学科。通常而言,经典的数据挖掘算法都可以直接用到Web数据挖掘上来,但为了提高挖掘质量,要在扩展算法上进行了研究,包括复合关联规则算法、改进的序列发现算法等。 2. Web数据挖掘的概念 https://www.99xueshu.com/w/ikeyp687ycyz.html
7.数据挖掘原理与实践蒋盛益标准答案数据挖掘原理与实践蒋盛益标准答案习题参考答案 第1 章绪论 1.1 数据挖掘处理的对象有哪些?请从实际生活中举出至少三种。 答:数据挖掘处理的对象是某一专业领域中积累的数据,对象既可以来自社会科学,又可以来自自然科学产生的数据,还可以是卫星观测得到的数据。数据形式和结构也各不相同, 可以是传统的关系数据库,可以https://www.360docs.net/doc/6917703164.html
8.数据挖掘原理(豆瓣)第二部分是数据挖掘算法,系统讲座了如何构建求解特定问题的不同算法。讲座的内容包括用于分类和回归的树及规则、关联规则、信念网络、传统统计模型,以及各种非线性模型,比如神经网络和“基于记忆”的局部模型。第三部分介绍了如何应用前面讲座的算法和原理来解决现实世界中的数据挖掘问题。谈到的问题包括元数据的作用,如何https://book.douban.com/subject/1103515/
9.数据挖掘原理与实践蒋盛益答案(32页)数据挖掘原理与实践 蒋盛益 答案.pdf,习题参考答案 第 1 章绪论 1.1 数据挖掘处理的对象有哪些?请从实际生活中举出至少三种。 答:数据挖掘处理的对象是某一专业领域中积累的数据,对象既可以来自社会科学,又可以 来自自然科学产生的数据,还可以是卫星观测得到的数据。数据https://max.book118.com/html/2020/0422/7136066100002131.shtm
10.数据挖掘原理与实践2016A答案.doc5.(15分)如下表所示的数据集。请写出按属性A和B划分时的信息增益的计算表达式。不需要计算出最后结果。并回答计算信息增益在分类算法中的作用。 答:该题和书上的例题3-4一样。 ,从数据的采集,构成,数据清理、数据挖掘,评估来说明一个聚类的挖掘任务。 https://www.taodocs.com/p-86393356.html
11.图形分析的概念/作用/工作原理/应用案例图形分析的概念/作用/工作原理/应用案例 图形分析(或图形算法)是用于确定图形中对象之间的关系强度和方向的分析工具。图形分析的重点在于每次两个对象之间的成对关系和整个图形的结构特征。 什么是图形分析? 图形分析是一种新兴的数据分析形式,可帮助企业理解网络或图形中关联实体数据之间的复杂关系。https://www.elecfans.com/d/1841529.html
12.一小时了解数据挖掘④:商务智能原理解读の数据挖掘九大定律结果,重要决策只是基于制定决策者的个人经验,而不是基于信息丰富的数据。数据挖掘就这样应运而生,数据挖掘填补了数据和信息之间的鸿沟。Erik Brynjolfsson曾经说过:有数据支持的(商业)决定总是更好的决定。数据在商业运营上要能起到作用,我们必须要做到: 理解数据的上下文,明白数据到底支持商业运营的什么过程。https://www.cda.cn/view/621.html
13.物联网原理及应用期末复习免挂指南交互原理:电子标签与阅读器之间通过耦合元件实现射频信号的空间(无接触)耦合;在耦合通道内,根据时序关系,实现能量的传递和数据交换。 传感器概念、分类、工作原理 传感器定义与工作原理:传感器(sensor)是由敏感元件和转换元件组成的一种检测装置,能感受到被测量,并能将检测和感受到的信息,按一定规律变换成为电信号(电压https://www.jianshu.com/p/33aa0cb1147c
14.基于数据挖掘技术研究评审专家名单泄露风险数据挖掘的基本原理和适用场景 数据挖掘是从大量的、不完全的、随机的数据中,提取隐含在其中的、事先无法预知的、但是潜在有用的信息和知识的过程。数据挖掘技术可以用来支持商务智能应用,如顾客分析、定向营销、工作流管理、欺诈检测以及自动化销售等。例如,银行可以通过数据挖掘技术对客户的信用评级进行分析https://www.ahggzy.org.cn/showdoc?docid=05a0af6a3f4d4d70a4ad128f256e36b3&id=557a28633b8d41c1bee5227e57518c30&subid=2957ab2c43e947c69c7f5158c159f601
15.数据库原理与应用系列01数据库系统概述(下)数据字典是用来描述数据库中有关信息的数据目录,包括数据库的三级模式,数据模型,用户名和用户权限等有关的用户信息,起着系统状态的目录表的作用。 3、DBMS的存储过程 (1)用户使用某种特定的数据操作语言向DBMS发出请求。 (2)DBMS接受请求,并将该请求解释转换为机器代码指令。 https://developer.aliyun.com/article/938050
16.数据挖掘与分析心得体会数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进! 2、数据分析 数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。https://www.360wenmi.com/f/file46470luq.html
17.数据挖掘的定义和解释数据挖掘的原理是什么? 数据挖掘涉及检查和分析大量信息,旨在发现有意义的模式和趋势。该过程包括收集数据、制定目标和应用数据挖掘技术。所选策略可能因目标而异,但数据挖掘的经验过程是相同的。典型的数据挖掘过程可能如下所示: 定义目标:例如,是否要进一步了解客户行为?是否要削减成本或增加收入?是否要识别欺诈?在数据https://www.kaspersky.com.cn/resource-center/definitions/data-mining
18.数据挖掘的理论技术和方法数据挖掘的原理数据挖掘的理论技术和方法 数据挖掘的原理,数据挖掘其实是一种深层次的数据分析方法。数据挖掘可以描述为:按企业既定业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性,并进一步将其模型化的先进有效的方法。应用的技术包括:数据库技术https://blog.51cto.com/u_13019/6270379