2024年大数据未来发展趋势中国大数据行业现状研究分析及市场前景预测报告(2024年)

2、欧盟将大数据作为Horizon2020计划优先领域

4、韩国推出大数据中心战略

一、2024年全球大数据发展回顾

二、2024年全球大数据热点事件

1、技术平台全面发展

2、大数据一体机盛行

3、企业对大数据的投入增加

4、业界巨头加快产业链布局

5、新兴企业不断涌现

一、大数据内生型价值模式

二、大数据外生型价值模式

三、大数据寄生型价值模式

四、大数据产品型价值模式

五、大数据云计算服务型价值模式

一、全球大数据产业规模及预测分析

二、全球大数据细分市场及预测分析

1、全球大数据细分市场

2、大数据专业服务市场及预测分析

4、大数据软件市场规模及预测分析

一、全球大数据产业企业类型分析

二、全球大数据专营厂商收入占比

三、全球大数据专营厂商市场格局

一、全球大数据产业发展趋势

二、全球大数据技术发展趋势

1、技术趋向多样化

2、基于云的数据分析平台将更趋完善

3、数据分析集逐步扩大

三、全球大数据面临的主要问题

1、大数据存储技术

2、数据深度分析与挖掘

3、数据安全

4、隐私保护

一、互联网发展分析

1、互联网网民规模

2、互联网资源规模

二、社交媒体发展分析

1、新闻网站

2、网络视频

3、搜索引擎

4、即时通信

5、网络社区

6、微博

7、博客/个人空间

三、物联网发展分析

1、中国物联网行业的发展现状

2、中国物联网行业的发展规模

1、中国电子商务行业发展概述

2、中国电子商务行业发展规模

五、移动设备发展分析

六、数据量分析

一、863计划

二、国家重大科技专项

三、物联网“十三五”发展规划

一、大数据产业链建设情况

二、大数据产业生命周期分析

三、大数据产业市场规模分析

四、大数据应用行业投资分布

五、大数据产业面临的挑战

一、大数据在经济预警方面的应用

二、大数据在市场营销方面的应用

三、大数据在医疗领域的应用

1、临床操作

2、付款/定价

3、研发

4、新的商业模式

5、公众健康

四、大数据在金融领域的应用

一、企业大数据产品与技术动向

二、中关村大数据产业链雏形初现

三、地方政府推出政策助推大数据发展

四、华为联手英国大学开发“大数据”

一、大数据产业总体规模预测分析

二、大数据产业细分市场预测分析

1、大数据基础架构硬件市场预测分析

2、大数据软件市场发展前景预测分析

3、大数据服务市场发展前景预测分析

一、多措并举,推进大数据产业化进程

1、支持信息服务企业发展转型

2、加大投入力度,加快技术突破

3、加强基础数据整合

ResearchandAnalysisontheCurrentSituationofChina'sBigDataIndustryandMarketOutlookForecastReport(2024)

二、加快推广应用,引导大数据发展

1、推动示范应用

2、推进智慧城市建设

三、优化信息化发展环境,加大专业人才培养力度

1、发挥行业协会作用

3、加大数据人才培养力度

一、被调查者所属行业

二、被调查者企业规模

三、被调查企业每月新增数据规模

一、企业数据系统架构存在的问题

二、企业面临的数据技术难题

三、企业数据挖掘和分析面临的问题

一、企业数据处理产品的服务商

二、企业大数据投入情况

三、企业部署开源大数据解决方案的计划

四、企业大数据的部署规模

一、企业做数据产品选型时考虑的因素

三、企业选择服务商时考虑的因素

二、企业如何看待商业智能的未来

一、电子政务建设现状

二、政府大数据应用需求

三、政府大数据应用场景

四、政府大数据应用价值分析

五、政府大数据应用典型案例

六、政府大数据应用前景预测

一、行业大数据应用需求分析

二、行业大数据应用场景分析

三、行业大数据应用价值分析

四、行业大数据应用典型案例

五、行业大数据应用前景预测

一、行业信息化建设现状

二、行业数据量及其特征

三、行业大数据应用需求分析

四、行业大数据应用场景分析

五、行业大数据应用价值分析

六、行业大数据应用典型案例

七、行业大数据应用前景预测

一、行业数据储量与特点

二、行业大数据应用需求分析

三、行业大数据应用前景预测

一、行业信息化现状分析

二、行业大数据应用经典案例

一、行业信息化建设情况

一、智慧城市建设情况分析

1、智慧城市投资规模及预测分析

2、智慧城市IT投资分析

二、智慧城市大数据应用需求

三、智慧城市大数据应用经典案例

四、智慧城市大数据应用前景

一、行业信息化建设现状分析

三、行业大数据应用经典案例

二、行业数据量及其特点

一、教育行业大数据应用需求

二、军事行业大数据应用需求

三、旅游行业大数据应用需求

一、IBM

二、HP

三、Intel

四、Teradata

五、Dell

六、ORACLE

七、SAP

八、EMC

九、CiscoSystems

十、Microsoft

十一、Accenture

十二、Fusion-io

十三、PwC

十四、SASInstitue

十五、Splunk

十六、Deloitte

十七、Amazon

十八、TableauSoftware

十九、NetApp

二十、Hitachi

二十一、Informatica

二十二、Fujitsu

二十三、其它企业

1、Google

2、Facebook

3、Twitter

4、Wal-Mart

5、ZARA

6、Datameer

7、Connotate

8、ClearStoryData

9、Siemens

中國大數據行業現狀研究分析及市場前景預測報告(2024年)

10、OperaSolution

一、互联网企业布局大数据

1、百度

2、淘宝

3、腾讯

4、阿里巴巴

5、新浪

6、盛大网络

二、IT企业布局大数据

1、浪潮

2、华为

3、联想

4、神州数码

5、东软

三、电信运营商布局大数据

1、中国电信

2、中国移动

3、中国联通

一、大数据对数据存储需求

二、数据存储市场格局现状

2、U盘、闪存卡市场格局

三、服务器市场格局现状

四、硬件层面投资机会分析

一、基础软件投资机会分析

二、应用软件投资机会分析

一、IT基础设施服务业投资机会

二、信息咨询服务业投资机会

三、信息安全行业投资机会

四、中国大数据产业投资象限

一、大数据产业投资热潮

二、大数据产业投资趋势

一、大数据产业并购动向

二、大数据产业并购特征

三、大数据产业并购趋势

一、大数据产业融资模式

1、PE/VC

2、上市融资

3、天使投资

二、大数据产业融资案例

1、风投融资案例

2、种子融资案例

3、大宗融资案例

三、大数据产业融资机会

一、江苏天泽信息产业股份有限公司

1、公司发展简介

2、公司组织架构分析

3、公司主要产品及特点

4、公司经营情况分析

5、公司经营优劣势分析

6、公司最新发展动向

二、北京拓尔思信息技术股份有限公司

4、公司研发能力分析

5、公司经营情况分析

6、公司经营优劣势分析

7、公司最新发展动向

三、厦门市美亚柏科信息股份有限公司

2、公司主要产品及特点

3、公司研发能力分析

一、荣之联科技股份有限公司

3、公司经营情况分析

4、公司经营优劣势分析

5、公司投资并购情况

二、上海天玑科技股份有限公司

6、公司投资并购情况

三、北京银信长远科技股份有限公司

2、公司经营情况分析

3、公司经营优劣势分析

一、杭州海康威视数字技术股份有限公司

5、公司营销网路分析

6、公司经营情况分析

7、公司经营优劣势分析

二、浙江大华技术股份有限公司

4、公司营销网络分析

一、安徽科大讯飞信息科技股份有限公司

ZhongGuoDaShuJuHangYeXianZhuangYanJiuFenXiJiShiChangQianJingYuCeBaoGao(2024Nian)

二、用友软件股份有限公司

一、成都卫士通信息产业股份有限公司

二、北京启明星辰信息技术股份有限公司

三、蓝盾信息安全技术股份有限公司

一、阿里巴巴集团

二、腾讯控股有限公司

5、公司发展战略分析

图表目录

图表1存储价格的下降

图表2网络带宽的增加

图表3“广播”加“接收”模式

图表4“请求”加“响应”模式

图表5网络生活

图表6谷歌公司数据中心内一景

图表7移动设备与传统台式机、笔记本电脑的全球出货量对比图

图表9大数据概念示意图

图表10MapReduce程序的具体执行过程

图表11GFS与传统分布式文件系统的区别

图表12写控制信号和写数据流

图表13BigTable的逻辑结构

图表14BigTable中存储记录板位置信息的结构

图表15云计算平台的管理系统

图表16云服务

图表17用于实时分析的MongoDB架构

图表18RCFile的行列混合存

图表19MDX→MapReduce简略示意图

图表20Hadoop多维分析平台架构图

图表21采集模块

图表22核心模块的逻辑

图表23MapReduceWorkFlow例子

图表24基于SOA的DaaS体系架构

图表25全球各大数据专营厂商的市场份额

图表26软件、硬件以及服务3个领域的收入占比

图表27中国网民规模与互联网普及率

图表28新增网民上网设备使用情况

图表29非网民未来上网意向

图表30非网民不使用互联网的原因

图表31手机网民规模

图表322024-2030年中国内地各省(市、自治区)网民规模和互联网普及率

图表33中国网民城乡结构

图表34中国城乡居民互联网普及率和城镇化进程

图表352024-2030年中国互联网基础资源对比

图表36中国IPv6地址数量

图表37中国IPv4地址资源变化情况

图表38中国分类域名数

图表39中国分类CN域名数

图表40中国网站数量

图表41中国网页数量

图表42中国网页数

图表43中国国际出口带宽变化情况

图表44主要骨干网络国际出口带宽数

图表452024年PC端与手机端网民搜索内容对比

图表462024-2030年中国网络视频用户数及网民使用率

图表472024-2030年中国搜索引擎用户数及网民使用率

图表482024-2030年中国即时通信用户数及网民使用率

图表492024-2030年中国社交网站用户数及网民使用率

图表502024-2030年中国微博用户数及网民使用率

图表512024-2030年博客/个人空间用户数及网民使用率

图表52大数据产业链全景图

图表53大数据第部分经济领域的影响

图表54数据使用率提升10%对行业人均产出的平均提升幅度

图表55商业智能市场规模(亿元)

图表562019-2024年我国大数据市场规模分析预测

图表57被调查者所属行业

图表58被调查者企业规模

图表59被调查企业每月新增数据规模

图表60企业数据系统架构存在的问题

图表61企业面临的数据技术难题

图表62企业数据挖掘和分析面临的问题

图表63企业数据处理产品的服务商

图表64企业大数据投入情况

图表65企业部署开源大数据解决方案的计划

图表66企业大数据的部署规模

图表67企业做数据产品选型时考虑的因素

图表69企业选择服务商时考虑的因素

中国ビッグデータ業界の現状研究分析及び市場見通し予測報告(2024年)

图表71企业如何看待商业智能的未来

图表72金融大数据应用场景分析

图表732024年智慧城市大数据应用分布

图表74基于Hadoop的区域卫生信息平台数据处理解决方案

图表752019-2024年中国智慧城市大数据应用规模预测分析

图表762019-2024年中国智慧城市重点领域大数据应用规模预测(单位:亿元)

图表772019-2024年中国能源行业信息化投资规模

图表80信息安全行业细分如下:

图表812019-2024年中国信息安全产品市场规模及增长率预测(单位:亿元)

THE END
1.数据挖掘类文章属于什么类型mob64ca12e83232的技术博客随着数据量的增长和技术的发展,数据挖掘的潜力将愈发显著。未来,数据挖掘将在决策支持、市场分析、个性化推荐等领域发挥更大的作用。 希望通过本篇文章,您对数据挖掘类文章的内容及其实现有了初步的了解。如需进一步学习,建议深入阅读相关领域的专业书籍与文献,探索更复杂和有趣的算法与技术。https://blog.51cto.com/u_16213397/12827058
2.数据挖掘算法实战:从传统统计到机器学习的商业智能分析完整技术栈通过数据挖掘算法,可以对用户的行为进行分析,包括用户偏好、购买行为、活跃度等,从而为企业的精准营销、产品推荐等提供支持。 风险管理 利用数据挖掘算法可以对风险进行识别和评估,包括信用风险、市场风险、操作风险等,帮助企业更好地进行风险管理和决策制定。 https://www.jianshu.com/p/e8efcaaf4349
3.中国建设银行申请数据分析方法相关专利,能解决无法及时有效识别和发专利摘要显示,本申请提供了一种数据分析方法、装置、设备、介质及产品。属于网络安全技术领域,该方法包括:获取各机构报送的各机构的从业人员的行为数据;对行为数据进行数据清洗和数据格式转换后,存入空白数据集中,得到行为数据集;采用关联规则挖掘算法挖掘行为数据集中行为数据之间的关联性,得到目标关联规则;根据聚类分析算https://www.163.com/dy/article/JJN5Q8DK0519QIKK.html
4.数字营销数据:深入挖掘价值在当今的数字时代,数据已经成为企业竞争力的重要组成部分。数字营销数据挖掘是一种利用大数据技术来分析和挖掘营销数据,以提高营销效果的方法。这篇文章将讨论数字营销数据挖掘的核心概念、算法原理、具体操作步骤以及数学模型公式。 1.1 数字营销数据挖掘的重要性 https://blog.csdn.net/universsky2015/article/details/135211815
5.浅谈数据挖掘中的个人信息保护【案例分析】 在“互联网+”时代下,传统行业能够突破自身局限走向终端智能化,升级用户体验,增强用户粘度,促进产品的全面提高,是未来获得新竞争优势的新动力。目前,各大企业都致力于搜集并分析用户数据,用以辅助经营决策。在数据挖掘的相关过程中,经常会涉及用户的个人信息和隐私。 http://media-ethic.ccnu.edu.cn/info/1168/2097.htm
6.数据挖掘与数据分析的异同点及典型应用案例在现代数据驱动的世界中,数据挖掘和数据分析已经成为了许多行业的重要工具。尽管这两个概念经常被人混淆,但它们各自有着独特的作用和应用场景。作为一个数据分析的从业者,我也曾在入门时对这两个术语感到困惑。经过实践,我逐渐发现了它们的异同,并且这些知识也帮助我在实际工作中做出更为精准的判断。 https://www.cda.cn/view/204806.html
7.数据挖掘应用(精选十篇)数据挖掘应用案例 篇2 康乃尔大学 Weill 医学院的研究者们,花了 18 个月的时间执行了一项大数据项目。他们用鉴识科学常用的棉花棒,在 486 个纽约地铁站搜集目标样本,车厢门、楼梯扶手、座椅、灯杆、垃圾桶都不放过,最后总共发现 1 万 5 千多种微生物,将近一半的样本是人类未知的有机生物,27% 是活性并俱有抗https://www.360wenmi.com/f/cnkeymoknlxl.html
8.数据分析报告(精选15篇)简单来说,数据挖掘是基于“归纳”的思路,从大量的数据中(因为是基于归纳的思路,因此数据量的大小很大程度上决定了数据挖掘结果的鲁棒性)寻找规律,为决策提供证据。从这种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的例子来说,例如数据挖掘技术https://www.ruiwen.com/fenxibaogao/8204699.html
9.数据挖掘应用案例分析,和数据挖掘应用案例分析的更多相关内容三个皮匠报告为您整理了关于数据挖掘应用案例分析的更多内容分享,帮助您更详细的了解数据挖掘应用案例分析,内容包括数据挖掘应用案例分析方面的资讯,以及数据挖掘应用案例分析方面的互联网报告,券商研究报告,国际英文报告,公司年报,招股说明书,行业精https://www.sgpjbg.com/labels/shujuwajueyingyonganlifenxi.html
10.生活中哪些数据挖掘的例子帆软数字化转型知识库电商平台如亚马逊、淘宝和京东利用数据挖掘技术来推荐商品。通过分析用户的浏览记录、购买历史、购物车内容和产品评价,平台能够生成个性化的推荐列表。这些推荐算法通常包括协同过滤、内容推荐和混合推荐等技术。亚马逊的推荐系统被认为是最成功的案例之一,它不仅通过用户行为数据推荐商品,还结合了其他用户的评价和购买记录,形https://www.fanruan.com/blog/article/600792/
11.数据挖掘成功案例3篇.doc数据挖掘成功案例3篇.doc,数据挖掘成功案例3篇 篇一:数据挖掘应用成功案例 1电话收费和管理办法 加拿大BC省电话公司要求加拿大SimonFraser大学KDD研究组根据其拥有的十多年的客户数据,总结、分析并提出新的电话收费和管理办法,制定既有利于公司又有利于客户的优惠政策。 https://max.book118.com/html/2017/0118/84897835.shtm
12.一小时了解数据挖掘②:分类算法的案例应用一小时了解数据挖掘②:分类算法的案例应用 关于本站 人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。 经管之家是国内活跃的在线教育咨询平台! 经管之家新媒体交易平台https://bbs.pinggu.org/jg/kaoyankaobo_kaoyan_3281329_1.html
13.哪些广为人知的数据挖掘案例其实是一地鸡毛?最近搜刮了几个典型案例,分别是啤酒与尿布、Google预测冬季流感、大数据预测纸牌屋、天气精准预报、股市K线预测,希望看了后于你有启示。 1、啤酒与尿布是数据挖掘最大的谎言 这个案例估计是数据挖掘界的头号代表。 全球零售业巨头沃尔玛在对消费者购物行为分析时发现,男性顾客在购买婴儿尿片时,常常会顺便搭配几瓶啤酒来https://maimai.cn/article/detail?fid=828484229&efid=z9pS7vah5hirX3wsSkSEyQ
14.数据挖掘案例实战:利用LDA主题模型提醛东评论数据(二)专栏中的每四篇文章都是一个完整的数据挖掘案例。案例介绍的顺序是:首先通过数据案例背景提出挖掘目标,然后阐述分析方法和过程,最后完成模型构建,同时穿插操作培训,将相关知识点嵌入相应的操作过程中。 为了方便读者轻松获得真实的实验环境,本专栏使用了众所周知的实验环境Python语言处理样本数据进行挖掘和建模。 https://www.ruidan.com/infomation/detail/152869
15.《数字法治》刊发上海法院文章肖凯及小同牛元宏:从经验理性到数成文法体系中,案例参照制度作用机理的本质仍然在于推动制定法在司法适用过程中的协调统一,而非发起“遵循先例”的动议、直接作为司法机关调整社会关系的工具或方法论。换言之,司法机关对于类案的“参照”权力,并非源于法院的“造法”权能,仅隶属于法院的“适法”权能。这也是类案智能推送机制建设中必须厘清的前提性概https://www.thepaper.cn/newsDetail_forward_27785753