1、1,中国计算机学会“21世纪大学本科计算机专业系列教材”算法设计与分析,王晓东编著,2,主要内容介绍,第1章算法引论第2章递归与分治策略第3章动态规划第4章贪心算法第5章回溯法第6章分支限界法,3,主要内容介绍(续),第7章概率算法第8章NP完全性理论第9章近似算法第10章算法优化策略,4,第1章算法引论,1.1算法与程序1.2表达算法的抽象机制1.3描述算法1.4算法复杂性分析,本章主要知识点:,5,1.1算法与程序,输入:有零个或多个外部量作为算法的输入。输出:算法产生至少一个量作为输出。确定性:组成算法的每条指令清晰、无歧义。有限性:算法中每条指令的执行
4、于算法正确性的证明和复杂性的分析。,8,在本书中,采用Java语言描述算法。1.Java程序结构,1.3描述算法,以下,对Java语言的若干重要特性作简要概述。,(1)Java程序的两种类型:应用程序和applet区别:应用程序的主方法为main,其可在命令行中用命令语句java应用程序名来执行;applet的主方法为init,其必须嵌入HTML文件,由Web浏览器或applet阅读器来执行。,(2)包:java程序和类可以包(packages)的形式组织管理。,(3)import语句:在java程序中可用import语句加载所需的包。例如,importjava.io.*;
5、语句加载java.io包。,9,1.3描述算法,2.Java数据类型,Java对两种数据类型的不同处理方式:,s=newString(“Welcome”);Strings=newString(“Welcome”);,10,1.3描述算法,表格1-1Java基本数据类型,11,1.3描述算法,3.方法,在Java中,执行特定任务的函数或过程统称为方法(methods)。例如,java的Math类给出的常见数学计算的方法如下表所示:,12,1.3描述算法,3.方法,计算表达式值的自定义方法ab描述如下:,publicstaticintab(inta,intb)
6、return(a+b+Math.abs(a-b)/2;,(1)方法参数:Java中所有方法的参数均为值参数。上述方法ab中,a和b是形式参数,在调用方法时通过实际参数赋值。,(2)方法重载:Java允许方法重载,即允许定义有不同签名的同名方法。上述方法ab可重载为:,publicstaticdoubleab(doublea,doubleb)return(a+b+Math.abs(a-b)/2.0;,13,1.3描述算法,4.异常,Java的异常提供了一种处理错误的方法。当程序发现一个错误,就引发一个异常,以便在合适地方捕获异常并进行处理。,通常用try块来定义异常处理。
7、每个异常处理由一个catch语句组成。,publicstaticvoidmain(Stringargs)tryf();catch(exception1)异常处理;catch(exception2)异常处理;finallyfinally块;,14,1.3描述算法,5.Java的类,(4)访问修饰,Java的类一般由4个部分组成:,(1)类名,(2)数据成员,(3)方法,15,1.3描述算法,6.通用方法,下面的方法swap用于交换一维整型数组a的位置i和位置j处的值。,publicstaticvoidswap(inta,inti,intj)in
8、ttemp=ai;ai=aj;aj=temp;,publicstaticvoidswap(objecta,inti,intj)objecttemp=ai;ai=aj;aj=temp;,该方法只适用于整型数组,该方法具有通用性,适用于Object类型及其所有子类,以上方法修改如下:,16,1.3描述算法,6.通用方法,(1)Computable界面,publicstaticComputablesum(Computablea,intn)if(a.length=0)returnnull;Computablesum
9、=(Computable)a0.zero();for(inti=0;in;i+)sum.increment(ai);returnsum;,利用此界面使方法sum通用化,17,1.3描述算法,6.通用方法,(2)java.lang.Comparable界面,Java的Comparable界面中惟一的方法头compareTo用于比较2个元素的大小。例如java.lang.CpareTo(y)返回x-y的符号,当xy时返回正数。,(3)Operable界面,有些通用方法同时需要Computable界面和Comparable界面的支持。为此可定义Oper
10、able界面如下:,publicinterfaceOperableextendsComputable,Comparable,(4)自定义包装类,由于Java的包装类如Integer等已定义为final型,因此无法定义其子类,作进一步扩充。为了需要可自定义包装类。,18,1.3描述算法,7.垃圾收集8.递归,Java的new运算用于分配所需的内存空间。例如,inta=newint500000;分配2000000字节空间给整型数组a。频繁用new分配空间可能会耗尽内存。Java的垃圾收集器会适时扫描内存,回收不用的空间(垃圾)给new重新分配。,Java允许方法
13、N0,使得当NN0时有f(N)Cg(N),则称函数f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)。即f(N)的阶不高于g(N)的阶。,根据O的定义,容易证明它有如下运算规则:(1)O(f)+O(g)=O(max(f,g);(2)O(f)+O(g)=O(f+g);(3)O(f)O(g)=O(fg);(4)如果g(N)=O(f(N),则O(f)+O(g)=O(f);(5)O(Cf(N)=O(f(N),其中C是一个正的常数;(6)f=O(f)。,22,1.4算法复杂性分析,的定义:如果存在正的常数C和自然数N0,使得当NN0时有f(N)Cg(N),则称
14、函数f(N)当N充分大时下有界,且g(N)是它的一个下界,记为f(N)=(g(N)。即f(N)的阶不低于g(N)的阶。,的定义:定义f(N)=(g(N)当且仅当f(N)=O(g(N)且f(N)=(g(N)。此时称f(N)与g(N)同阶。,o的定义:对于任意给定的0,都存在正整数N0,使得当NN0时有f(N)/Cg(N),则称函数f(N)当N充分大时的阶比g(N)低,记为f(N)=o(g(N)。例如,4NlogN+7=o(3N2+4NlogN+7)。,23,第2章递归与分治策略,24,将要求解的较大规模的问题分割成k个更小规模的子问题。,算法总体思想,n,T(n/2),T(n/2
15、),T(n/2),T(n/2),T(n),=,对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。,25,算法总体思想,对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。,n,T(n),=,将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。,26,算法总体思想,将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。,n,T(n),=,27,算法总体思想,将求出的小规模
16、的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。,分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。凡治众如治寡,分数是也。-孙子兵法,28,2.1递归的概念,直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并
17、由此产生许多高效算法。,下面来看几个实例。,29,2.1递归的概念,例1阶乘函数阶乘函数可递归地定义为:,边界条件,递归方程,边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。,30,2.1递归的概念,例2Fibonacci数列无穷数列1,1,2,3,5,8,13,21,34,55,被称为Fibonacci数列。它可以递归地定义为:,边界条件,递归方程,第n个Fibonacci数可递归地计算如下:publicstaticintfibonacci(intn)if(n=1)return1;returnfibona
18、cci(n-1)+fibonacci(n-2);,31,32,2.1递归的概念,例3Ackerman函数当一个函数及它的一个变量是由函数自身定义时,称这个函数是双递归函数。Ackerman函数A(n,m)定义如下:,33,2.1递归的概念,例3Ackerman函数前2例中的函数都可以找到相应的非递归方式定义:,但本例中的Ackerman函数却无法找到非递归的定义。,34,2.1递归的概念,例3Ackerman函数A(n,m)的自变量m的每一个值都定义了一个单变量函数:M=0时,A(n,0)=n+2M=1时,A(n,1)=A(A(n-1,1),0)=A(n-1,1)+2
19、,和A(1,1)=2故A(n,1)=2*nM=2时,A(n,2)=A(A(n-1,2),1)=2A(n-1,2),和A(1,2)=A(A(0,2),1)=A(1,1)=2,故A(n,2)=2n。M=3时,类似的可以推出M=4时,A(n,4)的增长速度非常快,以至于没有适当的数学式子来表示这一函数。,35,2.1递归的概念,例3Ackerman函数定义单变量的Ackerman函数A(n)为,A(n)=A(n,n)。定义其拟逆函数(n)为:(n)=minkA(k)n。即(n)是使nA(k)成立的最小的k值。(n)在复杂度分析中常遇到。对于通常所见到的正整数n,有(n)4。但在理
20、论上(n)没有上界,随着n的增加,它以难以想象的慢速度趋向正无穷大。,36,2.1递归的概念,例4排列问题设计一个递归算法生成n个元素r1,r2,rn的全排列。,设R=r1,r2,rn是要进行排列的n个元素,Ri=R-ri。集合X中元素的全排列记为perm(X)。(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:,当n=1时,perm(R)=(r),其中r是集合R中唯一的元素;当n1时,perm(R)由(r1)perm(R1),(r2)perm(R2),(rn)perm(Rn)构成。,37,2.1递归的概念,例5整数划分
21、问题将正整数n表示成一系列正整数之和:n=n1+n2+nk,其中n1n2nk1,k1。正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数。例如正整数6有如下11种不同的划分:6;5+1;4+2,4+1+1;3+3,3+2+1,3+1+1+1;2+2+2,2+2+1+1,2+1+1+1+1;1+1+1+1+1+1。,38,(2)q(n,m)=q(n,n),mn;最大加数n1实际上不能大于n。因此,q(1,m)=1。,(1)q(n,1)=1,n1;当最大加数n1不大于1时,任何正整数n只有一种划分形式,即,(4)q(n,m)=q(n,m-1)+q(n-
22、m,m),nm1;正整数n的最大加数n1不大于m的划分由n1=m的划分和n1n-1的划分组成。,(3)q(n,n)=1+q(n,n-1);正整数n的划分由n1=n的划分和n1n-1的划分组成。,2.1递归的概念,例5整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。,39,2.1递归的概念,例5整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,
23、因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。,正整数n的划分数p(n)=q(n,n)。,40,41,2.1递归的概念,例6Hanoi塔问题设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压
24、在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。,42,在问题规模较大时,较难找到一般的方法,因此我们尝试用递归技术来解决这个问题。,当n=1时,问题比较简单。此时,只要将编号为1的圆盘从塔座a直接移至塔座b上即可。当n1时,需要利用塔座c作为辅助塔座。此时若能设法将n-1个较小的圆盘依照移动规则从塔座a移至塔座c,然后,将剩下的最大圆盘从塔座a移至塔座b,最后,再设法将n-1个较小的圆盘依照移动规则从塔座c移至塔座b。由此可见,n个圆盘的移动问题可分为2次n-1个圆盘的移动问题,这又可以递归地用上述方法来做。由此可以设计出解Hanoi塔问题的
26、比非递归算法要多。,44,递归小结,解决方法:在递归算法中消除递归调用,使其转化为非递归算法。1.采用一个用户定义的栈来模拟系统的递归调用工作栈。该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。2.用递推来实现递归函数。3.通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。后两种方法在时空复杂度上均有较大改善,但其适用范围有限。,45,分治法的适用条件,分治法所能解决的问题一般具有以下几个特征:该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质利用该问题分
27、解出的子问题的解可以合并为该问题的解;该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。,因为问题的计算复杂性一般是随着问题规模的增加而增加,因此大部分问题满足这个特征。,这条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用,能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划。,这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。,46,分治法的基本步骤,divide-and-co
28、nquer(P)if(|P|=n0)adhoc(P);/解决小规模的问题dividePintosmallersubinstancesP1,P2,.,Pk;/分解问题for(i=1,i=k,i+)yi=divide-and-conquer(Pi);/递归的解各子问题returnmerge(y1,.,yk);/将各子问题的解合并为原问题的解人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几
30、)T(mi+1)。,48,二分搜索技术,分析:如果n=1即只有一个元素,则只要比较这个元素和x就可以确定x是否在表中。因此这个问题满足分治法的第一个适用条件,分析:比较x和a的中间元素amid,若x=amid,则x在L中的位置就是mid;如果xai,同理我们只要在amid的后面查找x即可。无论是在前面还是后面查找x,其方法都和在a中查找x一样,只不过是查找的规模缩小了。这就说明了此问题满足分治法的第二个和第三个适用条件。,分析:很显然此问题分解出的子问题相互独立,即在ai的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。,给定已按升序排好序的n个元素a0:n-1,现要在这n个元
31、素中找出一特定元素x。分析:,该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题;分解出的子问题的解可以合并为原问题的解;分解出的各个子问题是相互独立的。,49,二分搜索技术,给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x。,据此容易设计出二分搜索算法:publicstaticintbinarySearch(inta,intx,intn)/在a0amiddle)left=middle+1;elseright=middle-1;return-1;/未找到x,算法复杂
37、2个L型骨牌不得重叠覆盖。,58,棋盘覆盖,当k0时,将2k2k棋盘分割为4个2k-12k-1子棋盘(a)所示。特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,如(b)所示,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为棋盘11。,59,棋盘覆盖,publicvoidchessBoard(inttr,inttc,intdr,intdc,intsize)if(size=1)return;intt=tile+,
38、/L型骨牌号s=size/2;/分割棋盘/覆盖左上角子棋盘if(dr=tc+s)/特殊方格在此棋盘中chessBoard(tr,tc+s,dr,dc,s);else/此棋盘中无特殊方格/用t号L型骨牌覆盖左下角,boardtr+s-1tc+s=t;/覆盖其余方格chessBoard(tr,tc+s,tr+s-1,tc+s,s);/覆盖左下角子棋盘if(dr=tr+s,复杂度分析T(n)=O(4k)渐进意义下的最优算法,60,合并排序,基本思想:将待排序元素分成大小大致相同的2个子集合,分
39、别对2个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。,publicstaticvoidmergeSort(Comparablea,intleft,intright)if(leftright)/至少有2个元素inti=(left+right)/2;/取中点mergeSort(a,left,i);mergeSort(a,i+1,right);merge(a,b,left,i,right);/合并到数组bcopy(a,b,left,right);/复制回数组a,复杂度分析T(n)=O(nlogn)渐进意义下的最
41、r);/以ap为基准元素将ap:r划分成3段ap:q-1,aq和aq+1:r,使得ap:q-1中任何元素小于等于aq,aq+1:r中任何元素大于等于aq。下标q在划分过程中确定。qSort(p,q-1);/对左半段排序qSort(q+1,r);/对右半段排序,快速排序是对气泡排序的一种改进方法它是由C.A.R.Hoare于1962年提出的,64,快速排序,privatestaticintpartition(intp,intr)inti=p,j=r+1;Comparablex=ap;/将=x的元素交换到左边区域/将0);i
42、f(i=j)break;MyMath.swap(a,i,j);ap=aj;aj=x;returnj;,初始序列,j-;,5,7,5,2,6,8,i+;,5,6,5,2,7,8,j-;,5,2,5,6,7,8,i+;,完成,5,2,567,8,65,privatestaticintrandomizedPartition(intp,intr)inti=random(p,r);MyMath.swap(a,i,p);returnpartition(p,r);,快速排序,快速排序算法的性能取决于
46、0个元素大,因为在每一组中有2个元素小于本组的中位数,而n/5个中位数中又有(n-5)/10个小于基准x。同理,基准x也至少比3(n-5)/10个元素小。而当n75时,3(n-5)/10n/4所以按此基准划分所得的2个子数组的长度都至少缩短1/4。,69,privatestaticComparableselect(intp,intr,intk)if(r-p5)/用某个简单排序算法对数组ap:r排序;bubbleSort(p,r);returnap+k-1;/将ap+5*i至ap+5*i+4的第3小元素/与ap+i交换位置;/找中位数的中位数,r-p-4即上面
47、所说的n-5for(inti=0;i=(r-p-4)/5;i+)ints=p+5*i,t=s+4;for(intj=0;j3;j+)bubble(s,t-j);MyMath.swap(a,p+i,s+2);Comparablex=select(p,p+(r-p-4)/5,(r-p+6)/10);inti=partition(p,r,x),j=i-p+1;if(k=j)returnselect(p,i,k);elsereturnselect(i+1,r,k-j);,复杂度分析T(n)=O(n),上述算法将每一组的大小定为5
48、,并选取75作为是否作递归调用的分界点。这2点保证了T(n)的递归式中2个自变量之和n/5+3n/4=19n/20=n,01。这是使T(n)=O(n)的关键之处。当然,除了5和75之外,还有其他选择。,70,最接近点对问题,给定平面上n个点的集合S,找其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。,71,最接近点对问题,如果S的最接近点对是p3,q3,即|p3-q3|d,则p3和q3两者与m的距离不超过d,即p3(m-d,m,q3(m,m+d。由于在S1中,每个长度为d的半闭区间至多包含一个点(否则必有两点距离小于d),并且m是S1和S2的分割点,因此(m-d,m中至多包含
51、istance(u,v)d。这与d的意义相矛盾。,74,为了确切地知道要检查哪6个点,可以将p和P2中所有S2的点投影到垂直线l上。由于能与p点一起构成最接近点对候选者的S2中点一定在矩形R中,所以它们在直线l上的投影点距p在l上投影点的距离小于d。由上面的分析可知,这种投影点最多只有6个。因此,若将P1和P2中所有S中点按其y坐标排好序,则对P1中所有点,对排好序的点列作一次扫描,就可以找出所有最接近点对的候选者。对P1中每一点最多只要检查P2中排好序的相继6个点。,最接近点对问题,75,最接近点对问题,publicstaticdoublecpair2(S)n=|S|;if(n
52、m2.d1=cpair2(S1);d2=cpair2(S2);3.dm=min(d1,d2);,4.设P1是S1中距垂直分割线l的距离在dm之内的所有点组成的集合;P2是S2中距分割线l的距离在dm之内所有点组成的集合;将P1和P2中点依其y坐标值排序;并设X和Y是相应的已排好序的点列;5.通过扫描X以及对于X中每个点检查Y中与其距离在dm之内的所有点(最多6个)可以完成合并;当X中的扫描指针逐次向上移动时,Y中的扫描指针可在宽为2dm的区间内移动;设dl是按这种扫描方式找到的点对间的最小距离;6.d=min(dm,dl);returnd;,复杂度分析T
53、(n)=O(nlogn),76,设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他n-1个选手各赛一次;(2)每个选手一天只能赛一次;(3)循环赛一共进行n-1天。,按分治策略,将所有的选手分为两半,n个选手的比赛日程表就可以通过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割,直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让这2个选手进行比赛就可以了。,77,循环赛日程表,设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他n-1个选手各赛一次;(2)每个选手一天只能赛一次;(3)循环赛一共进行n-1天。,按分治策略,将所有的选手分为两半,
54、n个选手的比赛日程表就可以通过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割,直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让这2个选手进行比赛就可以了。,78,第3章动态规划,79,动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,80,算法总体思想,动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,81,但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。,算法总体思想,82,如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可
56、)矩阵连乘积是完全加括号的,则可表示为2个完全加括号的矩阵连乘积和的乘积并加括号,即,16000,10500,36000,87500,34500,完全加括号的矩阵连乘积可递归地定义为:设有四个矩阵,它们的维数分别是:总共有五中完全加括号的方式,85,矩阵连乘问题,给定n个矩阵,其中与是可乘的,。考察这n个矩阵的连乘积由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积,86,矩阵
57、连乘问题,给定n个矩阵A1,A2,An,其中Ai与Ai+1是可乘的,i=1,2,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。,穷举法:列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。,算法复杂度分析:对于n个矩阵的连乘积,设其不同的计算次序为P(n)。由于每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1.Ak)(Ak+1An)可以得到关于P(n)的递推式如下:,87,矩阵连乘问题,穷举法动态规划,将矩阵连乘积简记为Ai:j,这里ij,考察计算Ai:j的最优计算次序。设这个计算
58、次序在矩阵Ak和Ak+1之间将矩阵链断开,ikj,则其相应完全加括号方式为,计算量:Ai:k的计算量加上Ak+1:j的计算量,再加上Ai:k和Ak+1:j相乘的计算量,88,分析最优解的结构,特征:计算Ai:j的最优次序所包含的计算矩阵子链Ai:k和Ak+1:j的次序也是最优的。矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。,89,建立递归关系,设计算Ai:j,1ijn,所需要的最少数乘次数mi,j,则原问题的最优值为m1,n当i=j时,Ai:j=Ai,因此,mi,i=0,i=1,2,n当ij时,可以递归地定义mi,j为:,这里的维数为,的位置只有种可能,90,计算最优值,对于1ijn不同的有序对(i,j)对应于不同的子问题。因此,不同子问题的个数最多只有由此可见,在递归计算时,许多子问题被重复计算多次。这也是该问题可用动态规划算法求解的又一显著特征。用动态规划算法解此问题,可依据其递归式以自