盘点机器学习的十大主流算法,看看你会哪个?

机器学习作为现代人工智能的最重要的发展之一,是一门多领域交叉学科,包含概率论、统计学、逼近论、凸分析等多门学科,主要用于研究计算机怎样模拟或实现人类的学习行为。今天将盘点十个机器学习的主流算法,看看小伙伴会哪个?

1、线性回归

线性回归是机器学习最常见的算法,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,最常用的技术是最小二乘法。简单来说,是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x值)和数值结果(y值)。然后就可以用这条线来预测未来的值。

2、逻辑回归

逻辑回归和线性回归类似,但是它是用于输出为二进制的情况(即结果只能有两个可能的值),也叫作logistics回归,是一种广义的线性回归分析模型。它的原理是将中间结果值映射到结果变量Y,其值范围从0到1,然后这些值可以解释为Y出现的概率,对最终输出的预测是一个非线性的S型函数,常用于数据挖掘、数据分类等。

3、决策树

决策树常用于回归和分类任务,决策树的训练模型通过学习树表示的决策规则来学习预测目标变量的值,树是由具有相应属性的节点组成,在每个节点上根据可用的特征可询问有关数据的问题,左右分支代表可能的答案,最终节点对应一个预测值,每个特征点重要性是通过自顶向下方法确定,节点越高,属性越重要。

4、朴素贝叶斯

朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法,它发源于古典数学理论。它测量每个类的概率,每个类的条件概率给出x的值。这个算法用于分类问题,得到一个二进制“是/非”的结果,具体如下:

5、支持向量机

支持向量机(SVM)是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面。将数据项绘制为n维空间中的点,其中,n是输入特征的数量。在此基础上,支持向量机找到一个最优边界,称为超平面,它通过类标签将可能的输出进行最佳分离。

6、K-最近邻算法

K-最近邻算法(KNN)是数据挖掘分类技术中的最简单方法之一,其核心思想是如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

7、K-均值

K-均值也叫作K平均算法,是通过对数据集进行分类来聚类的,该算法根据每个数据点的特征,将每个数据点迭代地分配给K个组中的一个组。它为每个K-聚类(称为质心)选择K个点。基于相似度,将新的数据点添加到具有最近质心的聚类中。这个过程一直持续到质心停止变化为止。

8、随机森林

随机森林指的是利用多棵树对样本进行训练并预测的一种分类器,基本思想是多人意见比个人意见更准确。为了对新对象进行分类,我们从每个决策树中进行投票,并结合结果,然后根据多数投票做出最终决定。

(a)在训练过程中,每个决策树都是基于训练集的引导样本来构建的。

(b)在分类过程中,输入实例的决定是根据多数投票做出的。

9、降维

通常来说,随着时代发展,所捕获的数据量越来越多,机器学习问题变得更加复杂,意味着训练变得更加缓慢,而且很难找到一个好的解决方案,这种问题叫做维数灾难。

降维是在保证不丢失最重要信息的前提下,通过将特定的特征组合成更高层次的特征来解决这个问题,最常用的技术是主成分分析。

10、人工神经网络

人工神经网络(ANN)的原理是从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。它本质上是一组带有权值的边和节点组成的相互连接的层,称为神经元。

在人们日常生活中,最常见的生物识别方式一定是人脸识别,身份验证、门禁、监控等都需要用上人脸识别。对于数据结构工程师和算法工程师来说,人脸识别算法是需要接触的常见算法之一。那么今天将带大家盘点下七种最常见也是最需要了解的人脸识别算法,感兴趣的

在电磁场分析与设计中,当集总参数方法因电小尺寸条件无法满足而失效时,全波仿真算法成为解决复杂电磁问题的关键工具。这些算法基于场论,通过数值方法求解麦克斯韦方程组,为电磁兼容、天线设计、微波电路等领域提供了强有力的支持。1、矩量法(MoM)将

提起以人名命名的理论公式,可能很多人会说出傅里叶变化、泰勒级数等,但卡尔曼滤波器算法也同样出名,今天我们来介绍下这个算法,希望对小伙伴们有所帮助。1、卡尔曼滤波器是什么?卡尔曼滤波器(KalmanFilter)是一种高效的线性递归滤波器,

数据结构与算法虽然发展不算太久,但却是很多程序员及工程师的重点学习内容之一。在无数算法中,矩阵求解是常见且使用频率高的算法,其基本思路是将一个矩阵拆解为若干个矩阵的乘积的过程,今天我们来讲讲几种常见的矩阵分解算法。1、三角分解法三角分解法是

简介数字信号处理器(DSP)市场正在进入重要的扩展阶段,其驱动力是需要更高速度和带宽的新工作负载的不断扩展。传统上,大多数数据中心DSP用于数据中心内的交换机到交换机链路。然而,随着云提供商不断挑战规模和占地面积的极限,以及无源铜缆的生命周期即将结束,DSP正在出现新的重大市场机遇。ZR/ZR

THE END
1.机器学习算法:10种常用算法及其实现机器学习算法是人工智能和数据科学领域的核心技术,它们能够从数据中学习规律和模式,并用于预测和决策。本文将介绍10种常用的机器学习算法,探讨它们的原理、应用场景以及Python实现方法。我们将结合开源项目MLAlgorithms,深入了解这些算法的内部工作机制。 为什么要学习机器学习算法? https://blog.csdn.net/helloaiworld/article/details/142791048
2.智能降管理——开启降领域新时代瞪羚云长城战略咨询方式:依托机器学习算法及其他技术建立糖尿病精准模型。 案例:健安华夏建立了基于血糖预测/营养建议的精确糖尿病模型,可预测血糖数据及影响因素,提供个性化控糖方案,实现对糖尿病患者持续、高效管理。 (三)数据库技术与健康要素检测(人工智能+基因型+健康管理) https://www.chinagazelle.cn/news/detail/45e80a28ed074d97b8a56b4ffba42e6d
3.你应该知道的十种机器学习算法机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 毫无疑问,机器学习/人工智能领域在将来是越来越受欢迎。由于大数据是目前科技行业最热门的趋势,机器学习https://www.wokahui.com/article/industry/2578.html
4.机器学习大概的介绍让即便完全不了解机器学习的人也能了解机器学习接着,我们将这些 数据通过机器学习算法进行处理,这个过程在机器学习中叫做“训练”,处理的结果可以被我们用来对新的数据进行预测,这个结果一般称之为“模型”。对新数据 的预测过程在机器学习中叫做“预测”。“训练”与“预测”是机器学习的两个过程,“模型”则是过程的中间输出结果,“训练”产生“模型”,“模型https://www.elecfans.com/d/685637.html
5.宋旭光:司法裁判的人工智能化及其限度最新文选与人工智能算法和司法裁判理论相对应,下文将分两种进路进行分析:一种是显式编码、封闭规则的算法,即法律专家系统;另一种是机器学习算法,依靠大数据分析实现对判决的预测。前一种进路已经有了数十年的讨论,虽然成果颇丰,但终未显露胜利的迹象,目前也是疲态已显。后一种进路则方兴未艾,野心勃勃。本文讨论的重点就放在http://fxcxw.mzyfz.com/dyna/content.php?id=14711
6.科学网—[转载]联邦学习算法综述摘要:近年来,联邦学习作为解决数据孤岛问题的技术被广泛关注,已经开始被应用于金融、医疗健康以及智慧城市等领域。从3个层面系统阐述联邦学习算法。首先通过联邦学习的定义、架构、分类以及与传统分布式学习的对比来阐述联邦学习的概念;然后基于机器学习和深度学习对目前各类联邦学习算法进行分类比较和深入分析;最后分别从通信https://blog.sciencenet.cn/blog-3472670-1280769.html
7.30了,程序员中的老司机们,30后的路该开向哪里?有一个很有意思的问题,我面试的大部分工程师,哪怕比较资深的,对机器学习都没什么概念,别说 DNN,CNN,LSTM 等,对决策树,SVM,CRF 也完全陌生。相反很多北大清华的应届生,对这些目前热门的机器学习算法都比较熟悉,不少在相关的领域中,使用这些算法发表过论文。换句话说,年轻人搞新算法更有优势。 https://36kr.com/p/1721857474561
8.17个机器学习的常用算法在企业数据应用的场景下, 人们最常用的可能就是监督式学习和非监督式学习的模型。在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据, 目前半监督式学习是一个很热的话题。而强化学习更多的应用在机器人控制及其他需要进行系统控制的领域。 https://aidc.shisu.edu.cn/78/aa/c13626a161962/page.htm
9.进化计算机器学习进化计算的四种算法进化计算机器学习 进化计算的四种算法 一、遗传算法 进化计算(Evolutionary Computation)包括遗传算法(Genetic Algorithm,GA)、进化策略(Evolutionary Strategies,ES)和基因编程(Genetic Programming)。进化进算是受进化生物学启发而发展起来的计算模型,其实现过程基于达尔文的物竞天择、适者生存的生物进化原理,通过将现实问题https://blog.51cto.com/u_16213577/8939331
10.机器学习决策树算法实战——理论+详细的Python3代码实现作者简介:莫尘,学生一枚,努力学习机器学习,深度学习的相关知识,目前正在研究自然语言处理方向。文本选自莫尘的CSDN博客。 一、前言 本篇讨论决策树的原理和决策树构建的准备工作,机器学习决策树的原理,以及如何选择最优特征作为分类特征,决策树构建,决策树可视化,使用决策树进行分类预测,决策树的存储和读取以及sklearn实战https://dy.163.com/article/DT9SBK1C05198NMR.html
11.台风科学研究为防灾减灾强支撑台风尺度估算研究采用了静止气象卫星红外观测数据、中国气象局和联合台风警报中心(JTWC)的最佳路径资料,以及少量的台风中心和外围飞机观测报数据;选用多层感知器(MLP)、广义回归神经网络(GRNN)等5种典型的机器学习算法,建立卫星观测及台风本体物理属性信息与台风特征大风半径之间的非线性关系。 https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202305/t20230531_5541701.html
12.AlphaZero加强版AlphaTensor问世,发现史上最快矩阵乘法算法大量研究利用ML技术进行大脑相关研究,例如将高维非线性模式分类方法应用于功能磁共振成像图像,以区分与谎言和真相相关的大脑活动的空间模式;一种结合常规和灌注磁共振的计算机辅助分类方法,用于鉴别诊断脑瘤类型和分级;利用SVM通过分析头皮EEG,通过构建特定于患者的分类器来检测癫痫发作;各种机器学习算法(如SVM、NN和随机森https://www.medsci.cn/article/show_article.do?id=97c6e419443f
13.用反向传播算法解释大脑学习过程?Hinton等人新研究登上Nature子刊机器之心报道 魔王、Jamin、杜伟 反向传播可以解释大脑学习吗?近日 Hinton 等人的研究认为,尽管大脑可能未实现字面形式的反向传播,但是反向传播的部分特征与理解大脑中的学习具备很强的关联性。该研究将之前的相关研究置于「NGRAD」框架下,NGRAD 算法利用活动状态的差异驱动突触更新,这与反向传播类似。 https://www.thepaper.cn/newsDetail_forward_7047242
14.《常用算法之智能计算(三)》:机器学习计算因为机器学习计算中涉及了大量的统计学理论,机器学习与统计推断的联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习计算关注可以实现的、行之有效的学习算法,很多推论问题具有无程序可循的难度,所以部分的机器学习研究是开发简单、处理容易的近似算法。http://www.kepu.net/blog/zhangjianzhong/201903/t20190327_475625.html