机器学习算法的基本概念分类和评价标准,以及一些常用的机器学习算法的原理和特点

丰富的线上&线下活动,深入探索云世界

做任务,得社区积分和周边

最真实的开发者用云体验

让每位学生受益于普惠算力

让创作激发创新

资深技术专家手把手带教

遇见技术追梦人

技术交流,直击现场

海量开发者使用工具、手册,免费下载

极速、全面、稳定、安全的开源镜像

开发手册、白皮书、案例集等实战精华

为开发者定制的Chrome浏览器插件

机器学习是一门研究如何让计算机从数据中学习和推理的科学。机器学习算法是实现机器学习的具体方法,它们可以根据不同的目标、数据类型和应用场景进行分类和比较。本文将介绍机器学习算法的基本概念、分类和评价标准,以及一些常用的机器学习算法的原理和特点。

机器学习算法可以看作是一种从输入到输出的映射函数,它可以根据给定的数据集(训练集)来调整自身的参数,使得输出能够尽可能地符合预期的结果(标签或目标函数)。机器学习算法的核心问题是如何找到最优的参数,以及如何评估参数的好坏。

为了解决这些问题,机器学习算法通常需要以下几个要素:

机器学习算法可以根据不同的标准进行分类,其中最常见的是根据学习方式和任务类型进行分类。

根据学习方式,机器学习算法可以分为以下三类:

根据任务类型,机器学习算法可以分为以下四类:

机器学习算法的评价标准是指用来衡量机器学习算法的性能和效果的指标,它们可以从不同的角度和层面进行分析和比较。机器学习算法的评价标准可以分为以下三类:

机器学习算法的评价标准通常需要根据具体的任务和数据来选择和调整,以达到最佳的效果。一般来说,机器学习算法需要在准确性、速度和泛化性之间进行权衡和平衡,以避免出现过高或过低的情况。

机器学习算法有很多种类和变体,不可能在本文中一一介绍。下面,我们将举一些常用的机器学习算法的例子,简要介绍它们的原理和特点。

机器学习算法是一个不断发展和变化的领域,它面临着许多挑战和机遇。随着数据量的增加、计算能力的提升、理论的完善、应用的拓展,机器学习算法将会有更多的创新和突破,也将会带来更多的价值和影响。我们期待着机器学习算法能够在未来为人类社会带来更多的便利和福祉。

THE END
1.机器学习分类算法详解机器学习算法分类机器学习中的分类算法是用于将输入数据分配到预定义类别中的算法。分类任务是监督学习的一种,模型根据训练数据中的输入-输出对进行学习,然后预测新的输入数据的类别。常见的分类算法包括: 逻辑回归(Logistic Regression) k-近邻(k-Nearest Neighbors, k-NN) https://blog.csdn.net/a6181816/article/details/139317333
2.回归分类与聚类:三大方向剖解机器学习算法的优缺点机器之心对机器学习算法进行分类不是一件容易的事情,总的来看,有如下几种方式:生成与判别、参数与非参数、监督与非监督等等。 然而,就实践经验来看,这些都不是实战过程中最有效的分类算法的方式。因为对于应用机器学习而言,开发者一般会在脑海中有一个最终目标,比如预测一个结果或是对你的观察进行分类。 https://www.jiqizhixin.com/articles/2017-05-20-3
3.[MachineLearning]机器学习常见算法分类汇总Poll的笔记机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的分类。 博主在原创基础上加入了遗传算法(2.9)的介绍,这样一来,本篇博文所包含的机器学习算法更加全面丰富。该博文属于总结型文章,https://www.cnblogs.com/maybe2030/p/4665816.html
4.机器学习算法分类大全机器学习算法可以分为监督学习算法、无监督学习算法和半监督学习算法,下面以思维导图的形式总结了一下常见的监督学习和无监督学习算法,简单写了一下各种机器学习算法的分类: (1)监督学习:主要以分类、回归、概率图模型来写思维导图。 监督学习思维导图 https://www.jianshu.com/p/48a7f5fa44b3
5.机器学习算法的分类机器学习算法的分类 一、监督学习根据有无标签分类 根据有无标签,监督学习可分类为:传统的监督学习(Traditional Supervised Learning)、非监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)。 (1)传统的监督学习 传统的监督学习的每个训练数据均具有标签(标签可被理解为每个训练数据的正确输出,计算机https://www.elecfans.com/d/2061025.html
6.机器学习中常用的几种分类算法,如何选择合适的算法?今天和大家分享一下机器学习中常见的六种分类算法:K近邻、决策树、朴素贝叶斯、逻辑回归、支持向量机、随机森林、AdaBoost、GBDT、XGBoost。 下面,介绍了各个算法的概念及特点。 KNN 决策树 朴素贝叶斯 逻辑回归 支持向量机 随机森林 AdaBoost GBDT XGBoost https://www.wokahui.com/article/industry/2697.html
7.机器学习中常见的六种分类算法(附Python源码+数据集)今天和大家学习一下机器学习中常见的六种分类算法,如K近邻、决策树、朴素贝叶斯、逻辑回归、支持向量机、随机森林 除了介绍这六种不同分类算法外,还附上对应的Python代码案例,并分析各自的优缺点。 01 K近邻(KNN) k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类https://blog.51cto.com/u_11949039/4882936
8.科学网—[转载]联邦学习算法综述摘要:近年来,联邦学习作为解决数据孤岛问题的技术被广泛关注,已经开始被应用于金融、医疗健康以及智慧城市等领域。从3个层面系统阐述联邦学习算法。首先通过联邦学习的定义、架构、分类以及与传统分布式学习的对比来阐述联邦学习的概念;然后基于机器学习和深度学习对目前各类联邦学习算法进行分类比较和深入分析;最后分别从通信https://blog.sciencenet.cn/blog-3472670-1280769.html
9.轻松看懂机器学习十大常用算法轻松看懂机器学习十大常用算法 通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。 每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。https://mse.xauat.edu.cn/info/1017/1739.htm
10.《常用算法之智能计算(三)》:机器学习计算机器学习计算(Machine Learning Computing)主要设计和分析一些让计算机可以自动“学习”的算法,是一类从数据中自动分析获得规律、利用规律,对未来数据进行分类、聚类和预测等的一类算法。因为机器学习计算中涉及了大量的统计学理论,机器学习与统计推断的联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习计算关注可以http://www.kepu.cn/blog/zhangjianzhong/201903/t20190327_475625.html
11.综述机器学习中的12类算法腾讯云开发者社区最近在研究一些机器学习方面的论文,翻到了一篇较早的机器学习综述(2017年),虽然不是最新的研究现状,但考虑到经典机器学习算法其实发展并不像深度学习那么迅猛,所以其论述还是很有参考性。本文就其中关于机器学习算法分类的一段进行选摘翻译,以供参考。原文链接可通过阅读原文查阅。 https://cloud.tencent.com/developer/article/1851686