盘点:史上最全的数据挖掘方法!我火速收藏!算法聚类模糊集

数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程,通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

数据挖掘的常用方法我给大家整理了一下:

1、数据挖掘的分析方法——决策树法

决策树在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。

2、数据挖掘的分析方法——神经网络法

3、数据挖掘的分析方法——关联规则法

关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。

4、数据挖掘的分析方法——遗传算法

遗传算法模拟了自然选择和遗传中发生的繁殖、交配和基因突变现象,是一种采用遗传结合、遗传交叉变异及自然选择等操作来生成实现规则的、基于进化理论的机器学习方法。它的基本观点是“适者生存”原理,具有隐含并行性、易于和其他模型结合等性质。主要的优点是可以处理许多数据类型,同时可以并行处理各种数据;缺点是需要的参数太多,编码困难,一般计算量比较大。遗传算法常用于优化神经元网络,能够解决其他技术难以解决的问题。

5、数据挖掘的分析方法——聚类分析法

聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。根据定义可以把其分为四类:基于层次的聚类方法;分区聚类算法;基于密度的聚类算法;网格的聚类算法。常用的经典聚类方法有K-mean,K-medoids,ISODATA等。

6、数据挖掘的分析方法——模糊集法

模糊集法是利用模糊集合理论对问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。模糊集合理论是用隶属度来描述模糊事物的属性。系统的复杂性越高,模糊性就越强。

7、数据挖掘的分析方法——web页挖掘

通过对Web的挖掘,可以利用Web的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重大影响的外部环境信息和内部经营信息,并根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分析、评价和管理危机。

THE END
1.十大经典数据挖掘算法详解【十大经典数据挖掘算法详解】 以下是个人觉得算法讲解比较清晰易懂的博客! C4.5 K-Means SVM Apriori使用Apriori进行关联分析(一)使用Apriorhttps://www.jianshu.com/p/dc16ac2403e2
2.数据挖掘十大经典算法(详解)因素属性的值可以是连续量,C4.5 对其排序并分成不同的集合后按照ID3 算法当作离散量进行处理,但结论属性的值必须是离散值. 2) 训练例的因素属性值可以是不确定的,以 ? 表示,但结论必须是确定的 3. 对已生成的决策树进行裁剪,减小生成树的规模. 二、数据挖掘十大经典算法(2) k-means https://blog.csdn.net/u011067360/article/details/24368085
3.数据挖掘十大经典算法数据挖掘十大经典算法_总结版.ppt,《数据挖掘领域十大经典算法初探》 数据挖掘领域十大经典算法初探 - 结构之法 算法之道 - 博客频道 - CSDN.NET 译者:July二零一一年一月十五日 参考文献: 国际权威的学术组织ICDM,于06年12月年评选出的数据挖掘领域的十大经典算法: C4.5https://max.book118.com/html/2016/0424/41239351.shtm
4.学习详解数据挖掘十大经典算法!腾讯云开发者社区数据挖掘十大经典算法(5) 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。最大期望算法经过两个步骤https://cloud.tencent.com/developer/article/1105704
5.十大经典算法之C4.5算法(超详细附代码)C4.5是决策树算法的一种。决策树算法作为一种分类算法,目标就是将具有p维特征的n个样本分到c个类别中去。常见的决策树算法有ID3,C4.5,CART。 数据挖掘十大经典算法如下: 简介 C4.5是决策树算法的一种。决策树算法作为一种分类算法,目标就是将具有p维特征的n个样本分到c个类别中去。常见的决策树算法有ID3,Chttps://www.51cto.com/article/572078.html
6.数据挖掘领域十大经典算法summerbell数据挖掘领域十大经典算法 下面是参与评比的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。在我们学习数据挖掘时,可以以这18种算法为主线,如果能把每一种算法都弄懂,整个数据挖掘领域就掌握得差不多了。另外,也可以用这18种算法的熟悉程度来判断自己知识的掌握程度https://www.iteye.com/blog/479731
7.科学网—数据挖掘十大经典算法数据挖掘十大经典算法 1、C4.5分类决策树 2、K均值聚类 3、支持向量机 4、Apriori算法 5、期望最大化算法 6、PageRank算法 7、AdaBoost算法 8、k近邻算法 9、朴素贝叶斯分类器 10、分类与回归树(CART)https://wap.sciencenet.cn/blog-394950-535342.html
8.十大经典机器学习算法之一AprioriApriori算法是经典的挖掘频繁项集和关联规则的数据挖掘算法,也是十大经典机器学习算法之一。 Agrawal和Srikant两位博士在1994年提出了Apriori算法,主要用于做快速的关联规则分析。 A priori在拉丁语中指“来自以前”。当定义问题时,通常会使用先验知识或者假设,这被称作“一个先验”(a priori)。Apriori算法正是基于这样https://m.hqew.com/tech/fangan_2016440