《机器学习实战》学习笔记:K近邻算法入门及实战万字长文

在模式识别领域中,K-近邻算法(KNN算法)是一种用于分类和回归的非参数统计方法。

Github代码获取:

Python版本:Python3.x

运行平台:Windows

IDE:Sublimetext3

想入门的你还不快来上车。

一.简单k-近邻算法

本文将从k-邻近算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,本文也对sklearn实现k-邻近算法的方法进行了讲解。

实战实例:电影类别分类、约会网站配对效果判定、手写数字识别。本文出现的所有代码和数据集,均可在我的github上下载,欢迎Follow、Star——

下载地址:

1.k-近邻法简介

k近邻法(k-nearestneighbor,k-NN)是1967年由CoverT和HartP提出的一种基本分类与回归方法。

它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。

输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。

最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

举个简单的例子,我们可以使用k-近邻算法分类一个电影是爱情片还是动作片。

表1.1就是我们已有的数据集合,也就是训练样本集。这个数据集有两个特征,即打斗镜头数和接吻镜头数。除此之外,我们也知道每个电影的所属类型,即分类标签。用肉眼粗略地观察,接吻镜头多的,是爱情片。打斗镜头多的,是动作片。

以我们多年的看片经验,这个分类还算合理。如果现在给我一部电影,你告诉我这个电影打斗镜头数和接吻镜头数。

不告诉我这个电影类型,我可以根据你给我的信息进行判断,这个电影是属于爱情片还是动作片。而k-近邻算法也可以像我们人一样做到这一点,不同的地方在于,我们的经验更”牛逼”,而k-邻近算法是靠已有的数据。

比如,你告诉我这个电影打斗镜头数为2,接吻镜头数为102,我的经验会告诉你这个是爱情片,k-近邻算法也会告诉你这个是爱情片。

但是k-近邻算法不会告诉你这些,因为在它的眼里,电影类型只有爱情片和动作片,它会提取样本集中特征最相似数据(最邻近)的分类标签,得到的结果可能是爱情片,也可能是动作片,但绝不会是”爱情动作片”。当然,这些取决于数据集的大小以及最近邻的判断标准等因素。

2.距离度量

我们已经知道k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签。那么,如何进行比较呢?比如,我们还是以表1.1为例,怎么判断红色圆点标记的电影所属的类别呢?如图1.1所示。

我们可以从散点图大致推断,这个红色圆点标记的电影可能属于动作片,因为距离已知的那两个动作片的圆点更近。k-近邻算法用什么方法进行判断呢?

没错,就是距离度量。这个电影分类的例子有2个特征,也就是在2维实数向量空间,可以使用我们高中学过的两点距离公式计算距离,如图1.2所示。

(101,20)->动作片(108,5)的距离约为16.55

(101,20)->动作片(115,8)的距离约为18.44

(101,20)->爱情片(5,89)的距离约为118.22

(101,20)->爱情片(1,101)的距离约为128.69

通过计算可知,红色圆点标记的电影到动作片(108,5)的距离最近,为16.55。如果算法直接根据这个结果,判断该红色圆点标记的电影为动作片,这个算法就是最近邻算法,而非k-近邻算法。那么k-邻近算法是什么呢?k-近邻算法步骤如下:

计算已知类别数据集中的点与当前点之间的距离;

按照距离递增次序排序;

选取与当前点距离最小的k个点;

确定前k个点所在类别的出现频率;

返回前k个点所出现频率最高的类别作为当前点的预测分类。

比如,现在我这个k值取3,那么在电影例子中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该红色圆点标记的电影为动作片。

这个判别过程就是k-近邻算法。

3.Python3代码实现

我们已经知道了k-近邻算法的原理,那么接下来就是使用Python3实现该算法,依然以电影分类为例。

(1)准备数据集

对于表1.1中的数据,我们可以使用numpy直接创建,代码如下:

运行结果,如图1.3所示:

(2)k-近邻算法

根据两点距离公式,计算距离,选择距离最小的前k个点,并返回分类结果。

运行结果,如图1.4所示:

可以看到,分类结果根据我们的”经验”,是正确的,尽管这种分类比较耗时,用时1.4s。

到这里,也许有人早已经发现,电影例子中的特征是2维的,这样的距离度量可以用两点距离公式计算,但是如果是更高维的呢?

对,没错。我们可以用欧氏距离(也称欧几里德度量),如图1.5所示。我们高中所学的两点距离公式就是欧氏距离在二维空间上的公式,也就是欧氏距离的n的值为2的情况。

看到这里,有人可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的,分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。

不同的算法在不同数据集上的表现可能完全不同。为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。

通过大量的测试数据,我们可以得到分类器的错误率-分类器给出错误结果的次数除以测试执行的总数。

错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0。

同时,我们也不难发现,k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果。因此,可以说k-邻近算法不具有显式的学习过程。

二.k-近邻算法实战之约会网站配对效果判定

上一小结学习了简单的k-近邻算法的实现方法,但是这并不是完整的k-近邻算法流程,k-近邻算法的一般流程:

已经了解了k-近邻算法的一般流程,下面开始进入实战内容。

1.实战背景

海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:

datingTestSet.txt数据下载:

海伦收集的样本数据主要包含以下3种特征:

每年获得的飞行常客里程数

每周消费的冰淇淋公升数

这里不得不吐槽一句,海伦是个小吃货啊,冰淇淋公斤数都影响自己择偶标准。打开txt文本文件,数据格式如图2.1所示。

2.准备数据:数据解析

在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。分类器接收的数据是什么格式的?

从上小结已经知道,要将数据分类两部分,即特征矩阵和对应的分类标签向量。在kNN_test02.py文件中创建名为file2matrix的函数,以此来处理输入格式问题。将datingTestSet.txt放到与kNN_test02.py相同目录下,编写代码如下:

运行上述代码,得到的数据解析结果如图2.2所示。

可以看到,我们已经顺利导入数据,并对数据进行解析,格式化为分类器需要的数据格式。接着我们需要了解数据的真正含义。可以通过友好、直观的图形化的方式观察数据。

3.分析数据:数据可视化

在kNN_test02.py文件中编写名为showdatas的函数,用来将数据可视化。编写代码如下:

运行上述代码,可以看到可视化结果如图2.3所示。

为什么这么说呢?每年获得的飞行常客里程数表明,海伦喜欢能享受飞行常客奖励计划的男人,但是不能经常坐飞机,疲于奔波,满世界飞。

4.准备数据:数据归一化

表2.1给出了四组样本,如果想要计算样本3和样本4之间的距离,可以使用欧拉公式计算。

计算方法如图2.4所示。

而产生这种现象的唯一原因,仅仅是因为飞行常客里程数远大于其他特征值。但海伦认为这三种特征是同等重要的,因此作为三个等权重的特征之一,飞行常客里程数并不应该如此严重地影响到计算结果。

在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1区间内的值:

其中min和max分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了分类器的复杂度,但为了得到准确结果,我们必须这样做。在kNN_test02.py文件中编写名为autoNorm的函数,用该函数自动将数据归一化。代码如下:

运行上述代码,得到结果如图2.4所示。

从图2.4的运行结果可以看到,我们已经顺利将数据归一化了,并且求出了数据的取值范围和数据的最小值,这两个值是在分类的时候需要用到的,直接先求解出来,也算是对数据预处理了。

5.测试算法:验证分类器

机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分类器的正确率。

需要注意的是,10%的测试数据应该是随机选择的,由于海伦提供的数据并没有按照特定目的来排序,所以我么你可以随意选择10%数据而不影响其随机性。

运行上述代码,得到结果如图2.5所示。

从图2.5验证分类器结果中可以看出,错误率是3%,这是一个想当不错的结果。我们可以改变函数datingClassTest内变量hoRatio和分类器k的值,检测错误率是否随着变量值的变化而增加。依赖于分类算法、数据集和程序设置,分类器的输出结果可能有很大的不同。

6.使用算法:构建完整可用系统

我们可以给海伦一个小段程序,通过该程序海伦会在约会网站上找到某个人并输入他的信息。程序会给出她对男方喜欢程度的预测值。

在cmd中,运行程序,并输入数据(12,44000,0.5),预测结果是”你可能有些喜欢这个人”,也就是这个人魅力一般。一共有三个档次:讨厌、有些喜欢、非常喜欢,对应着不喜欢的人、魅力一般的人、极具魅力的人。结果如图2.6所示。

三、k-近邻算法实战之sklearn手写数字识别1.实战背景

对于需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素x32像素。尽管采用本文格式存储图像不能有效地利用内存空间,但是为了方便理解,我们将图片转换为文本格式,数字的文本格式如图3.1所示。

与此同时,这些文本格式存储的数字的文件命名也很有特点,格式为:数字的值_该数字的样本序号,如图3.2所示。

对于这样已经整理好的文本,我们可以直接使用Python处理,进行数字预测。数据集分为训练集和测试集,使用上小结的方法,自己设计k-近邻算法分类器,可以实现分类。数据集和实现

代码下载地址:

这里不再讲解自己用Python写的k-邻域分类器的方法,因为这不是本小节的重点。接下来,我们将使用强大的第三方Python科学计算库Sklearn构建手写数字系统。

2.sklearn简介

使用sklearn可以很方便地让我们实现一个机器学习算法。一个复杂度算法的实现,使用sklearn可能只需要调用几行API即可。所以学习sklearn,可以有效减少我们特定任务的实现周期。

3.sklearn安装

在安装sklearn之前,需要安装两个库,即numpy+mkl和scipy。不要使用pip3直接进行安装,因为pip3默安装的是numpy,而不是numpy+mkl。

找到对应python版本的numpy+mkl和scipy,下载安装即可,如图3.3和图3.4所示。

4.sklearn实现k-近邻算法简介

官网英文文档:

sklearn.neighbors模块实现了k-近邻算法,内容如图3.5所示。

我们使用sklearn.neighbors.KNeighborsClassifier就可以是实现上小结,我们实现的k-近邻算法。KNeighborsClassifier函数一共有8个参数,如图3.6所示。

△图3.6KNeighborsClassifier

KNneighborsClassifier参数说明:

n_neighbors:默认为5,就是k-NN的k的值,选取最近的k个点。

weights:默认是uniform,参数可以是uniform、distance,也可以是用户自己定义的函数。uniform是均等的权重,就说所有的邻近点的权重都是相等的。distance是不均等的权重,距离近的点比距离远的点的影响大。用户自定义的函数,接收距离的数组,返回一组维数相同的权重。

algorithm:快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。

kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。

balltree是为了克服kd树高纬失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。

leaf_size:默认是30,这个是构造的kd树和ball树的大小。这个值的设置会影响树构建的速度和搜索速度,同样也影响着存储树所需的内存大小。需要根据问题的性质选择最优的大小。

metric:用于距离度量,默认度量是minkowski,也就是p=2的欧氏距离(欧几里德度量)。

p:距离度量公式。在上小结,我们使用欧氏距离公式进行距离度量。除此之外,还有其他的度量方法,例如曼哈顿距离。这个参数默认为2,也就是默认使用欧式距离公式进行距离度量。也可以设置为1,使用曼哈顿距离公式进行距离度量。

metric_params:距离公式的其他关键参数,这个可以不管,使用默认的None即可。

n_jobs:并行处理设置。默认为1,临近点搜索并行工作数。如果为-1,那么CPU的所有cores都用于并行工作。

KNeighborsClassifier提供了以一些方法供我们使用,如图3.7所示。

由于篇幅原因,每个函数的怎么用,就不具体讲解了。官方手册已经讲解的很详细了,各位可以查看这个手册进行学习,我们直接讲手写数字识别系统的实现。

5.sklearn小试牛刀

我们知道数字图片是32x32的二进制图像,为了方便计算,我们可以将32x32的二进制图像转换为1x1024的向量。

对于sklearn的KNeighborsClassifier输入可以是矩阵,不用一定转换为向量,不过为了跟自己写的k-近邻算法分类器对应上,这里也做了向量化处理。然后构建kNN分类器,利用分类器做预测。创建kNN_test04.py文件,编写代码如下:

运行上述代码,得到如图3.8所示的结果。

四、总结1.kNN算法的优缺点

简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归;

可用于数值型数据和离散型数据;

对异常值不敏感

计算复杂性高;空间复杂性高;

样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);

一般数值很大的时候不用这个,计算量太大。但是单个样本又不能太少,否则容易发生误分。

最大的缺点是无法给出数据的内在含义。

2.其他

关于algorithm参数kd_tree的原理,可以查看《统计学方法李航》书中的讲解;

关于距离度量的方法还有切比雪夫距离、马氏距离、巴氏距离等;

如有问题,请留言。如有错误,还望指正,谢谢!

五.参考说明

本文中提到的电影类别分类、约会网站配对效果判定、手写数字识别实例和数据集,均来自于《机器学习实战》的第二章k-近邻算法。

本文的理论部分,参考自《统计学习方法李航》的第三章k近邻法以及《机器学习实战》的第二章k-邻近算法。

点击左下角“阅读原文”处,可以进入作者的知乎专栏,可以查看高清完整版代码

THE END
1.编程学习有哪些APP推荐编程学习有哪些下载现在开源的编程内容越来越多,所以大家在手机上学习编程的渠道也越来越丰富,为了有效地提高大家学习的效率,今天小编给大家带来手机编程软件app有哪些,为大家推荐几款靠谱的手机编程学习类软件,让大家能够在手机上接受到更专业全面的教育,从而有效地提高大家对于计算机的编程热爱效果,帮助大家更好地了解计算机原理 09-https://www.wandoujia.com/bangdan/1319495/
2.数学计算器软件有哪些?数学计算器app推荐通过编辑你的函数,带入各种坐标值,为你显现出该函数的图案,让你在学习的时候可以有更加直观的感受。欢迎下载!geogebra 点击下载 PhotoMath学习神器 29.4M / 2023-11-09 / v8.32.0 官方iPhone版 photomath是一款数学解题神器,通过软件你只需要将摄像头扫描下数学题,便可以立刻显示出答案,Photomath可以通过帮助用户http://www.downcc.com/k/shuxuejisuanqi/
3.手机编程软件app下载安装手机编程工具大全3322软件站为用户整理了手机编程工具大全,包括c4droid、Python编译器、Pydroid3等多款好用的编程app。这些软件可以帮助用户在手机上直接编辑运行C/C++程序,并且支持代码高亮、语法检查等功能。为了帮助喜爱编程的小伙伴进行学习,还有Java编程狮、Python编程狮、扇贝编程、猿编程、编程狮app等。这些应用提供了很多免费教程和https://m.32r.com/zt/sjbcgj/
4.六款免费学习编程的app(非常详细),零基础入门到精通,看这一篇就够了想学编程,这几款免费学编程的软件可以了解一下! 1.C语言编辑器 C语言编辑器是一款非常精简的app,主要为C语言初学者提供核心的功能,能够随手验证一些小程序。 2. python编辑器 专业的编程内容设计,多种多样的语言选择,拥有完美的脚本,强大的功能,没有任何广告,能快速编写以及快速提示、自由复制等等。 https://blog.csdn.net/SpringJavaMyBatis/article/details/143502540
5.一文详细介绍最新的几款AI辅助编程工具,这些信息差你都知道吗大家好,这里是架构工具栈!点击上方关注,添加“星标”,一起学习大厂前沿架构! AI 辅助编程 关于AI辅助编程,最近咨询的小伙伴太多了,很多小伙伴一头雾水,不知道哪些可以免费使用,哪些需要付费使用,今天作个简单的盘点,跟大家分享一下最近体验过的几款AI产品。 https://zhuanlan.zhihu.com/p/673883104
6.计算机算法与问题求解用什么软件好MATLAB:作为一款强大的商业数学软件,MATLAB不仅支持算法开发,还具备出色的数据可视化、数据分析及数值计算能力。其丰富的运算符和库函数,使得算法实现更为简洁高效。此外,MATLAB还支持面向对象编程,并且具有良好的可移植性。 Python:Python以其简洁的语法和强大的库支持,在数据分析、机器学习等领域广受欢迎。对于算法求解https://agents.baidu.com/content/question/9c57223c5efdbbac5f313fd7
7.8款出色的AI数学工具Edu指南Socratic 于 2018 年被 Google 收购,已成为学生在数学、科学、文学和社会研究等广泛学科中寻求快速、可靠答案和深入解释的学习伴侣。通过利用先进的 AI 算法,该应用程序可以识别每个问题背后的核心概念,并从网络上的可信来源策划最相关的内容。 Socratic 的主要特点: https://www.shangyexinzhi.com/article/22320560.html
8.2021年度软件中心支持服务(机器学习算法及专业模型应用)项目”公中国银行软件中心“2020-2021年度软件中心支持服务(机器学习算法及专业模型应用)项目”公开邀请公告。https://www.boc.cn/aboutboc/bi6/202007/t20200703_18086660.html
9.算法学习app免费下载算法详解app是一款手机学习算法的app,为用户详解各种算法原理,图文并茂,让你可以更好的理解和学习算法模型,对于对编程感兴趣的朋友来说非常不错。需要的用户赶快来下载吧。 功能介绍 算法详解app这款应用解释了一些算法的细节并且还有更加详细的演示功能,帮助使用者更好的理解特定的算法。 https://www.fxxz.com/azsoft/288531.html
10.趣学算法(陈小玉著)带目录完整pdf[95MB]电子书下载趣学算法下载 投诉报错 书籍大小:95.7MB 书籍语言:简体中文 书籍类型:国产软件 书籍授权:免费软件 书籍类别:编程其它 应用平台:PDF 更新时间:2018-09-06 购买链接:京东异步社区 网友评分: 360通过腾讯通过金山通过 95.7MB 详情介绍 本书内容按照算法策略分为7章。 https://www.jb51.net/books/635507.html
11.360WiFi官网1、负责360免费WiFi安卓客户端的研发 任职资格: 1. 扎实的计算机基础知识,丰富的实际代码编写经验 2. 良好的数据结构和算法基础 3、熟悉 Java/C++,Android SDK/NDK 4、有 Android 商业软件的开发经验 5、如果你研究阅读过 Android 系统的源代码,会有加分 https://wifi.360.cn/help/joinus/
12.AI研报:关于人工智能算法在软件开发中的应用调研报告自动化代码生成是人工智能在软件开发中的一个重要应用领域。传统上,开发人员需要手动编写大量的代码,而人工智能可以通过学习现有代码库,自动生成新的代码片段。这不仅可以大大提高开发效率,还能降低代码错误率。例如,许多集成开发环境(IDE)已经集成了代码补全功能,它们基于机器学习算法分析上下文,为开发人员提供代码建议,极大https://www.hxsd.com/information/10168/
13.强!本科生在Nature(IF=36)发表文章,爆炸性信息!通过对这些深度学习在基因组学中的应用案例进行深度讲解和实操,让学员能够掌握深度学习分析高维基因组学、转录组学、蛋白组学等多组学数据流程,系统学习深度学习及基因组学理论知识及熟悉软件代码实操,熟练掌握这些前沿的分析工具的使用以及研究创新深度学习算法解决生物学及临床疾病问题与需求。https://new.qq.com/rain/a/20230324A01B9Z00
14.淮北高新区企业2022年2月招聘信息3、熟悉数字图像处理技术,有扎实的数字图像处理算法知识; 4、熟悉OpenCV,或熟悉Halcon或VisionPro等视觉软件库;了解机器视觉成像原理; 5、熟悉深度学习算法更佳, 6、熟悉图像的特征检测、模式识别等相关算法; 7、有强烈责任心,团队协作能力,以及独立解决问题的能力; https://gxq.huaibei.gov.cn/qyfw/qyzp/57001281.html
15.MVP机器视觉算法平台软件以AI赋能智能制造试用软件平台需要填写下方表单信息,信息提交后我们会在3个工作日之内与您联系。试用有效期:3个月;试用权限:算法平台&深度学习训练平台 姓名 公司 电话 E-mail 省份 请选择省份 城市 请选择城市 区/县 请选择区/县 备注 我已阅读并同意隐私政策 提交https://www.irayple.com/cn/productPage/Arith
16.中国首个运筹学算法平台正式发布打破国外高价商业求解器垄断技术人员可以从LEAVES平台上免费下载各个求解器,按照自身需求进行调整与使用。 LEAVES本身也可以看作是任何与运筹学建模、优化算法相关的软件展示平台。其中的重头戏,包括了由杉数科技牵头的机器学习算法求解器LEMO。LEMO采用了一系列国际最前沿的大规模凸优化与非凸优化技巧,目前对多个机器学习经典模型在单机上的求解速度https://www.guancha.cn/scroll-news/2017_10_18_431273.shtml
17.年薪50万!北航合肥创新研究院招募研究员!澎湃号·政务3、研究面向特定领域应用的人工智能算法,包括大数据分析与管理、多媒体应用技术、视觉内容理解、自然语言理解、光学信息处理、机器学习、人工智能学习平台等方向(注:开展一个或多个应用方向研究); 4、负责带领团队成员进行核心算法设计和实现,并进行系统软件的开发与维护; https://www.thepaper.cn/newsDetail_forward_4985535
18.中国开发者真实现状:不爱跳槽月薪集中在8K本次报告中,我们发现,AI 领域开发者中软件工程师占比最高,为 38.3%,可见软件工程师在 AI 领域也占重要地位。其次,机器学习/深度学习算法工程师、计算机视觉/图像识别/图像处理工程师都是较为热门的岗位,分别占 19.9% 和 15.5%。 不过,此次调研中,在机器学习/深度学习/神经网络成为开发者最感兴趣的方向同时,有https://www.36kr.com/p/1164571992032388.html
19.主流机器学习和数据挖掘软件包PurStarMahout是Hadoop大数据平台上的开源机器学习软件包。Mahout提供了在大规模集群上对大数据进行深度分析的能力。主流的数据挖掘和机器学习算法不断在Mahout平台上实现,包括聚类、分类、协同过滤(Collaborative Filtering,用于推荐)以及频繁集挖掘等众多的算法。 早期版本的Mahout使用MapReduce计算模型实现机器学习和数据挖掘算法。由https://www.cnblogs.com/purstar/p/14161970.html
20.训练集越多机器学习算法效果越好训练集数量训练集越多机器学习算法效果越好 训练集数量 作者为Google 软件工程师,美国西北大学电子信息工程博士,擅长大规模分布式系统,编译器和数据库。 从谷歌的机器学习代码中得知,目前需要一万亿个训练样本 训练数据的特性和数量是决定一个模型性能好坏的最主要因素。一旦你对一个模型输入比较全面的训练数据,通常针对这些训练https://blog.51cto.com/u_16099273/9301910
21.深度学习在人类基因组学中的应用:下一代测序数据的综述基因组学中的深度学习工具/软件/流程 图2 多个基因组学领域(例如变异调用和注释、疾病变异预测、基因表达和调控、表观遗传学和药物基因组学)充分利用高通量数据的生成,并利用深度学习算法的强大功能进行复杂预测(图2)。DNA/RNA测序技术和机器学习算法特别是深度学习的现代演进开辟了一个新的研究篇章,能够将大型生物数https://cloud.tencent.com/developer/article/2326627
22.数据治理新要求个人介绍:OPPO互联网应用研发平台及推搜算法部总经理,有超过14年的互联网广告研发经验,主导OPPO广告播放系统、搜索引擎等多项研发建设,也同时负责厂商应用体系数据搭建等工作。目前负责OPPO软件商店、游戏中心等研发工作,同时负责推搜部门整体技术探索及应用。 https://hub.baai.ac.cn/view/32749
23.数学的论文优秀(15篇)低年级的小组合作学习中,处理好学生的个性独立意识和集体合作意识、教师与学生的关系,才能有效的培养学生的独立思考能力,激发学生的竞争意识。 1.处理好师生的之间的关系 教学过程中的最重要的活动就是以学生为主的多动。所以,小组合作学习应该以学生的主体意识为出发点,把整个教学当作一部戏剧,教师作为“导演”,学生https://www.yjbys.com/biyelunwen/fanwen/shuxue/734624.html