深度神经网络(DNN)模型与前向传播算法刘建平Pinard

深度神经网络(DeepNeuralNetworks,以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。

输出和输入之间学习到一个线性关系,得到中间输出结果:$$z=\sum\limits_{i=1}^mw_ix_i+b$$

接着是一个神经元激活函数:

$$sign(z)=\begin{cases}-1&{z<0}\\1&{z\geq0}\end{cases}$$

从而得到我们想要的输出结果1或者-1。

这个模型只能用于二元分类,且无法学习比较复杂的非线性模型,因此在工业界无法使用。

而神经网络则在感知机的模型上做了扩展,总结下主要有三点:

1)加入了隐藏层,隐藏层可以有多层,增强模型的表达能力,如下图实例,当然增加了这么多隐藏层模型的复杂度也增加了好多。

2)输出层的神经元也可以不止一个输出,可以有多个输出,这样模型可以灵活的应用于分类回归,以及其他的机器学习领域比如降维和聚类等。多个神经元输出的输出层对应的一个实例如下图,输出层现在有4个神经元了。

3)对激活函数做扩展,感知机的激活函数是$sign(z)$,虽然简单但是处理能力有限,因此神经网络中一般使用的其他的激活函数,比如我们在逻辑回归里面使用过的Sigmoid函数,即:$$f(z)=\frac{1}{1+e^{-z}}$$

还有后来出现的tanx,softmax,和ReLU等。通过使用不同的激活函数,神经网络的表达能力进一步增强。对于各种常用的激活函数,我们在后面再专门讲。

上一节我们了解了神经网络基于感知机的扩展,而DNN可以理解为有很多隐藏层的神经网络。这个很多其实也没有什么度量标准,多层神经网络和深度神经网络DNN其实也是指的一个东西,当然,DNN有时也叫做多层感知机(Multi-Layerperceptron,MLP),名字实在是多。后面我们讲到的神经网络都默认为DNN。

从DNN按不同层的位置划分,DNN内部的神经网络层可以分为三类,输入层,隐藏层和输出层,如下图示例,一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。

层与层之间是全连接的,也就是说,第i层的任意一个神经元一定与第i+1层的任意一个神经元相连。虽然DNN看起来很复杂,但是从小的局部模型来说,还是和感知机一样,即一个线性关系$z=\sum\limitsw_ix_i+b$加上一个激活函数$\sigma(z)$。

由于DNN层数多,则我们的线性关系系数$w$和偏倚$b$的数量也就是很多了。具体的参数在DNN是如何定义的呢?

首先我们来看看线性关系系数$w$的定义。以下图一个三层的DNN为例,第二层的第4个神经元到第三层的第2个神经元的线性系数定义为$w_{24}^3$。上标3代表线性系数$w$所在的层数,而下标对应的是输出的第三层索引2和输入的第二层索引4。你也许会问,为什么不是$w_{42}^3$,而是$w_{24}^3$呢?这主要是为了便于模型用于矩阵表示运算,如果是$w_{42}^3$而每次进行矩阵运算是$w^Tx+b$,需要进行转置。将输出的索引放在前面的话,则线性运算不用转置,即直接为$wx+b$。总结下,第$l-1$层的第k个神经元到第$l$层的第j个神经元的线性系数定义为$w_{jk}^l$。注意,输入层是没有$w$参数的。

再来看看偏倚$b$的定义。还是以这个三层的DNN为例,第二层的第三个神经元对应的偏倚定义为$b_3^{2}$。其中,上标2代表所在的层数,下标3代表偏倚所在的神经元的索引。同样的道理,第三个的第一个神经元的偏倚应该表示为$b_1^{3}$。同样的,输入层是没有偏倚参数$b$的。

在上一节,我们已经介绍了DNN各层线性关系系数$w$,偏倚$b$的定义。假设我们选择的激活函数是$\sigma(z)$,隐藏层和输出层的输出值为$a$,则对于下图的三层DNN,利用和感知机一样的思路,我们可以利用上一层的输出计算下一层的输出,也就是所谓的DNN前向传播算法。

对于第二层的的输出$a_1^2,a_2^2,a_3^2$,我们有:$$a_1^2=\sigma(z_1^2)=\sigma(w_{11}^2x_1+w_{12}^2x_2+w_{13}^2x_3+b_1^{2})$$$$a_2^2=\sigma(z_2^2)=\sigma(w_{21}^2x_1+w_{22}^2x_2+w_{23}^2x_3+b_2^{2})$$$$a_3^2=\sigma(z_3^2)=\sigma(w_{31}^2x_1+w_{32}^2x_2+w_{33}^2x_3+b_3^{2})$$

对于第三层的的输出$a_1^3$,我们有:$$a_1^3=\sigma(z_1^3)=\sigma(w_{11}^3a_1^2+w_{12}^3a_2^2+w_{13}^3a_3^2+b_1^{3})$$

将上面的例子一般化,假设第$l-1$层共有m个神经元,则对于第$l$层的第j个神经元的输出$a_j^l$,我们有:$$a_j^l=\sigma(z_j^l)=\sigma(\sum\limits_{k=1}^mw_{jk}^la_k^{l-1}+b_j^l)$$

其中,如果$l=2$,则对于的$a_k^1$即为输入层的$x_k$。

从上面可以看出,使用代数法一个个的表示输出比较复杂,而如果使用矩阵法则比较的简洁。假设第$l-1$层共有m个神经元,而第$l$层共有n个神经元,则第$l$层的线性系数$w$组成了一个$n\timesm$的矩阵$W^l$,第$l$层的偏倚$b$组成了一个$n\times1$的向量$b^l$,第$l-1$层的的输出$a$组成了一个$m\times1$的向量$a^{l-1}$,第$l$层的的未激活前线性输出$z$组成了一个$n\times1$的向量$z^{l}$,第$l$层的的输出$a$组成了一个$n\times1$的向量$a^{l}$。则用矩阵法表示,第l层的输出为:$$a^l=\sigma(z^l)=\sigma(W^la^{l-1}+b^l)$$

这个表示方法简洁漂亮,后面我们的讨论都会基于上面的这个矩阵法表示来。

有了上一节的数学推导,DNN的前向传播算法也就不难了。所谓的DNN的前向传播算法也就是利用我们的若干个权重系数矩阵$W$,偏倚向量$b$来和输入值向量$x$进行一系列线性运算和激活运算,从输入层开始,一层层的向后计算,一直到运算到输出层,得到输出结果为值。

输入:总层数L,所有隐藏层和输出层对应的矩阵$W$,偏倚向量$b$,输入值向量$x$

输出:输出层的输出$a^L$

1)初始化$a^1=x$

2)for$l=2$to$L$,计算:$$a^l=\sigma(z^l)=\sigma(W^la^{l-1}+b^l)$$

最后的结果即为输出$a^L$。

单独看DNN前向传播算法,似乎没有什么大用处,而且这一大堆的矩阵$W$,偏倚向量$b$对应的参数怎么获得呢?怎么得到最优的矩阵$W$,偏倚向量$b$呢?这个我们在讲DNN的反向传播算法时再讲。而理解反向传播算法的前提就是理解DNN的模型与前向传播算法。这也是我们这一篇先讲的原因。

(欢迎转载,转载请注明出处。欢迎沟通交流:liujianping-ok@163.com)

THE END
1.超强!深度学习Top10算法!top10算法在深度学习以下是我心目中的深度学习top10算法,它们在创新性、应用价值和影响力方面都具有重要的地位。 1、深度神经网络(DNN) 背景:深度神经网络(DNN)也叫多层感知机,是最普遍的深度学习算法,发明之初由于算力瓶颈而饱受质疑,直到近些年算力、数据的爆发才迎来突破。 https://blog.csdn.net/xiangxueerfei/article/details/140894206
2.深度学习残差残差神经网络算法mob64ca141a2a87的技术博客本文解读了一种新的深度注意力算法,即深度残差收缩网络(Deep Residual Shrinkage Network)。从功能上讲,深度残差收缩网络是一种面向强噪声或者高度冗余数据的特征学习方法。本文首先回顾了相关基础知识,然后介绍了深度残差收缩网络的动机和具体实现,希望对大家有所帮助。 https://blog.51cto.com/u_16213724/8718018
3.深度学习及CNNRNNGAN等神经网络简介(图文解释超详细)常见的深度学习算法主要包括卷积神经网络、循环神经网络和生成对抗神经网络(Generative Adversarial Network,GAN)等。这些算法是深度学习的基础算法,在各种深度学习相关系统中均有不同程度的应用 1. 卷积神经网络 卷积神经网络(Convolutional Neural Network,CNN)是第一个被成功训练的多层神经网络结构,具有较强的容错、自学https://developer.aliyun.com/article/1400173
4.第五章深度学习与神经网络基础*1、深度学习算法可以分为监督学习和非监督学习两类。() 正确 错误 *2、自编码器是非监督学习类算法。() 正确 错误 *3、深度学习不同于机器学习,没有非监督类算法。() 正确 错误 *4、循环神经网络更适合于处理图像识别问题。() 正确 错误 *5、循环神经网络更适合于处理语音识别问题。() https://www.wjx.cn/jq/87327809.aspx
5.深度学习与神经网络有什么区别?深度学习算法主要采用反向传播算法来优化模型,其核心思想是通过计算误差反向传播至每一个节点,进而调整权值和阈值等参数。 而神经网络的算法包括感知器算法、反向传播算法、Kohonen自组织网络算法等多种方法,不同的算法适用于不同的场景和问题。 综上所述,深度学习和神经网络有着很多相似之处,但也存在一些差异。深度学https://www.cda.cn/bigdata/201326.html
6.科学网—[转载]联邦学习算法综述摘要:近年来,联邦学习作为解决数据孤岛问题的技术被广泛关注,已经开始被应用于金融、医疗健康以及智慧城市等领域。从3个层面系统阐述联邦学习算法。首先通过联邦学习的定义、架构、分类以及与传统分布式学习的对比来阐述联邦学习的概念;然后基于机器学习和深度学习对目前各类联邦学习算法进行分类比较和深入分析;最后分别从通信https://blog.sciencenet.cn/blog-3472670-1280769.html
7.机器学习深度学习和神经网络之间的区别和联系python传统机器学习、深度学习和神经网络之间的区别可以从以下几个方面来理解: 架构:机器学习基于统计模型。神经网络和深度学习架构只是非常大和更复杂的统计模型,并使用许多相互连接的节点。 算法:深度学习算法与其他机器学习算法的区别在于它们使用具有多层的深度神经网络,这使得网络能够在不需要显式特征工程的情况下学习数据中https://www.jb51.net/python/316268muf.htm
8.深度学习算法原理——神经网络的基本原理腾讯云开发者社区2.1、神经网络的结构 神经网络是由很多的神经元联结而成的,一个简单的神经网络的结构如下图所示: 其中一个神经元的输出是另一个神经元的输入,+1项表示的是偏置项。上图是含有一个隐含层的神经网络模型,L1层称为输入层,L2层称为隐含层,L3层称为输出层。 https://cloud.tencent.com/developer/article/1066395